13

## M.Tech. Second Semester (Chemical Engineering) (CBS)

## 13014 : Energy Technology & Conservation : 2 CE 4

P. Pages: 2

Time: Three Hours



AU - 3284

Max. Marks: 80

Notes:

- 1. All question carry marks as indicated.
- 2. Answer six question.
- 3. Question No. 1 is compulsory.
- Due credit will be given to neatness and adequate dimensions. 4.
- 5. Assume suitable data wherever necessary.
- 6. Diagrams and chemical equations should be given wherever necessary.
- 7. Illustrate your answer necessary with the help of neat sketches.
- 8. Use of slide rule logarithmic tables, Steam tables, Moller's Chart, Drawing instrument, Thermodynamic table for moist air, Psychrometric Charts and Refrigeration charts is permitted.
- 9. Discuss the reaction, mechanism wherever necessary.
- Use of pen Blue/Black ink/refill only for writing the answer book.

http://www.sgbauonline.com A furnace is fired with 100kg of coal containing 84kg carbon, 6kg H<sub>2</sub> and rest ash. 40% 15 excess air is supplied for combustion. Calculate the composition by volume and weight of the gases leaving the furnace and also

the orsat analysis.

An equimolar mixture of CH<sub>4</sub> and C<sub>2</sub>H<sub>6</sub> is used in a furnace for steam generation as gaseous fuel, 100% excess air is supplied for combustion because of faulty design of the jet not all carbon is burnt 50% of the carbon goes to CO<sub>2</sub> and rest CO. All the H<sub>2</sub> burns to H<sub>2</sub>O and the H<sub>2</sub>O formed is assumed to be in the liquid state. Calculate the air-fuel ratio (moles of air supplied | mole of fuel gas), the amount of heat actually released to that of the heat released had the combustion gone to completion. Data: - standard Heat of combustion (HHV/GHV) of CH<sub>4</sub> =  $-8.91 \times 10^5 \text{ kJ/kg} \cdot \text{mole} (\Delta H_R = \Delta H_C^{\circ})$ 

$$(\Delta H_C^{\circ}) C_2 H_6 = -15 \cdot 61 \times 10^5 \text{ kJ/kg} \cdot \text{mol}$$
  
 $(\Delta H_C^{\circ}) CO = -2 \cdot 83 \times 10^5 \text{ kJ/kg} \cdot \text{mole}$ 

- 0.34 m<sup>3</sup> of air is compressed from 103 kPa and 40°C to 1.75MPa, calculate the final 3. 13 temperature, final volume, change in work transfer, Heat transfer (Q), change in internal energy ( $\Delta U$ ),  $\Delta H$  and  $\Delta S$  if the compression is carried out:
  - i) Isothermally.
  - Adiabatically ii)
  - iii) Polytropically.

Tabulate all the result and comment on the result.

$$C_P \text{ air} = 1.005, C_V = 0.718$$

R = 0.287, All expressed in  $kJ/kg^{\circ} \cdot k$  r = 1.4 and n = 1.3

P.T.O

4. In a steam power plant, the boiler absorbs 2881 kJ/kg of heat with an entering, liquid enthalpy of 120kJ/kg flowing at 'u' m/sec, steam leaves the boiler at 50 m/s with an enthalpy of 3000 kJ/kg. After producing 'W' work through a turbine steam leaves with a velocity of 250 m/sec and exit enthalpy of 'h' kJ/kg.

A condenser removes 2200kJ/kg of heat from the steam and the liquid water is pumped track to the boiler with an enthalpy of 118kJ/kg before pumping. Assuming velocity of feed water before and after pump is same.

Draw a schematic diagram for the above situation and calculate

- i) Enthalpy of steam leaving turbine.
- ii) Velocity of liquid before and after feed pump.
- iii) Cycle work and cycle efficiency.
- 5. A compressor changes the pressure of a gas from 100 kPa to 700 kPa, 10 kw of power is required to compress 3 kg/min of air. The compressor is cooled by cooling water to dessipate the heat at the rate of 30 kJ/min. Calculate the amount of cooling water to be circulated. The specific volume of gas is 0.88m³/kg and 0.18m³/kg and the internal energy is 220kJ/kg and 315 kJ/kg at 100 kPa and 700 kPa respectively.

| • | Pressure | Specific volume | U(internal Energy) |
|---|----------|-----------------|--------------------|
|   | 100      | 0.88            | 220                |
|   | 700      | 0.18            | 315                |
|   | kPa      | m³/kg           | kJ/kg              |

Three gaseous mixtures with the following molar compositions are to be blended in such a proportion that the final mixture contains 40% CH<sub>4</sub>, 35% C<sub>2</sub>H<sub>6</sub> and 25% C<sub>3</sub>H<sub>8</sub>.

| Gas                           | I  | II | III |
|-------------------------------|----|----|-----|
| CH <sub>4</sub>               | 25 | 35 | 55  |
| C <sub>2</sub> H <sub>6</sub> | 35 | 20 | 40  |
| C <sub>3</sub> H <sub>8</sub> | 40 | 45 | 05  |

In what proportion the above gases must be mixed.

- 7. If m kg of water at T<sub>1</sub> temperature is mixed with equal amount of H<sub>2</sub>O at T<sub>2</sub>°C isentropically, calculate
  - i)  $\Delta S$  of the universe
  - ii) Find the condition for maximum work.
  - iii) Show that this maximum work =  $m C_p \left( \sqrt{T_1} \sqrt{T_2} \right)$
- 8. An engine develope 25kw by consuming 7kg fuel/hr. The heating value of the fuel is 40000 kJ/kg calculate the
  - Thermal efficiency of engine.
  - ii) The specific fuel consumption express as kJ/kw·hr
  - iii) Work Done by the engine in 15min.
- Discuss the following:-
  - Adiabatic and Actual flame temperature.
  - 2) Development of power generation.
- 10 Classify the various sources of biofuels and explain each briefly.

\*\*\*\*\*

13

13

13

13

nttp://www.sgbauonline.com

13

......