M.Tech. First Semester (Chemical Engineering) (CBS)

13003: Process Control: 1 CE 3

P. Pages: 2

Time: Three Hours

AV - 3385

Max. Marks: 80

Notes: 1.

- Answer six questions.
- 2. Questions No. 1 is compulsory.
- Assume suitable data wherever necessary.
- 4. Illustrate your answer necessary with the help of neat sketches.
- Plot the root locus diagram for the following system and also determine which values of k
 make the system stable.

$$G(s) = \frac{K}{(s+1)(s+2)(s+3)}.$$

2. The overall transfer function of the control system is given as,

$$G(s) = \frac{16}{1.5s^2 + 2.4s + 6}.$$

A step change of magnitude 6 is introduced into the system.

1) Overshoot.

- 2) Period of oscillation
- 3) Natural period of oscillation.
- 4) Rise time.
- 5) Ultimate value of response.
- 6) Maximum value of response.
- 3. The open loop transfer function a control system is givens –

13

13

13

$$G(s) = \frac{K_C}{s(0.1s+1)(10s+1)}$$

Sketch the Asymptotic Bode diagram of control system. Determine the value of K_C for which the control system is stable.

- 4. In a mixing tank the feed rate of solution is 1.5 m³ / min and the volume at tank is 1.5 m³. The steady state concentration is 0.03k mol/m³. The inlet concentration of the feed is increased to 0.08k mol/m³. After 0.55min, the concentration of the feed is decreased to 0.035k mol/m³. Calculate the outlet concentration of the solution for t = 0.1 min, t = 0.55 min and t = 1.5 min.
- 5. An aqueous solution in a tank is heated by a coil. The density and the specific heat of solution is 1000kg/m³ & 4kJ/kg°C respectively. The feed rate is 1.5 m³/min & the time constant of the tank is 90 sec. The power supplied to the heating coil is varied sinusoidally between 500 to 600 kW with a 38 Sec/cycle period of oscillation. The steady state temperature is 60°C calculate.
 - i) The temperature of the solution at t = 30 sec.
 - ii) Amplitude ratio.
 - iii) Phase lag.

P.T.O

- Explain the control strategies of distillation column for pressure control and product 6. quality control used in chemical process plant.
- 13

- 7. Discuss the term.
 - Phase margin.

4

2) Gain margin.

Ziegler-Nichols (Z-N) controller settings.

5

8. a) Explain inferential control with advantages & disadvantages.

b) Describe the design criteria of controllers.

- 5
- 9. a) Obtain an analytical expression for a unit impulse response of a control system whose transfer function is as -

 $G(s) = \frac{Y(s)}{X(s)} = \frac{3}{s^2 + 4s + 3}$

b) Discuss Adaptive control with applications.

- 9
- 10. a) Explain Distributed control system. (DCS) and mention the application of DCS in chemical process plant.
- 7
- b) Discuss the term supervisory control with its significance in control system.
- 6
