M.Phil. (Science) Examination PHYSICS—II

(Material Science)

Time: Three Hours] [Maximum Marks: 80

Note :- (1) Solve any FIVE questions.

- (2) All questions carry equal marks.
- (a) Describe phase, components and variables with examples.
 - (b) Show the correlation between free energy and equilibrium diagram of eutectic containing binary diagrammatically.
 8
- (a) Describe the phase diagram of uniary H₂O system.
 How a lever rule is used to determine the composition of eutectic C?
 - (b) Explain a general binary phase diagram of components A and B with partial solid solubility in each other. Describe the micro-structural changes during cooling of eutectic binary system.

3.	(a)	Discuss four invariant reactions using phase boundaries.
		What is pro-eutectic composition?
	(b)	Describe the significance of time scale of cooling in suppressing phase transformation. Discuss dendritic structure.
4.	(a)	Describe the mass-flow process under steady state condition. What is the solution of Ficks second law?
	(b)	Explain the vacancy and interstitial diffusion process in terms of enthalpies of defect formation and migration.
5.	(a)	Describe the Czochalski method for single crystal growth. Discuss solid state reaction to prepare polycrystalline ceramics.
	(b)	Describe any four techniques to prepare thin films.
6.	(a)	Describe the Braggs law for x-ray diffraction. How x-ray diffraction data are used to determine crystal structure?
	(b)	What is the principle of thermogravimetric analysis (TGA)? What are the general applications of differential thermal analysis (DTA)?

7.	(a)	Draw a Burger's circuit around edge dislocation and screw dislocation. What are print defects?
	(b)	Distinguish between the direction of the dislocation line, the Burger vector and the direction of motion
		of both edge and screw dislocations.
8.	(a)	Explain the frequency dependent polarization and
		loss phenomenon.
	(b)	State and explain occurrence of different polarization on application of external field to a dielectric material
		Explain piezoelectricity in solids.
9.	(a)	Describe the ferromagnetism in solids. Why al
		materials exhibit diamagnetism ?
	(b)	Discuss soft and hard magnetic materials. Why ferrites
		are used in transformers?
10.	(a)	Discuss the luminescence spectra of Ag activated
		ZnS. Distinguish between fluorescenee and
		phosphorescence.
	(b)	On what factors the extents of opacity of transparen
		materials depnds? Why polycrystalline materials are
		opaque?

UBS-9-2222

(Contd.)

2