AQ-2911

Faculty of Engineering & Technology M.E. Civil (Structural Engg.) Semester—II (New-C.G.S.) Examination

FINITE ELEMENT METHOD

Paper—2 SFSE 1

Sections—A & B

Time: Three Hours]

[Maximum Marks: 80

INSTRUCTIONS TO CANDIDATES

- (1) All questions carry marks as indicated.
- (2) Answer THREE questions from Section A and THREE questions from Section B.
- (3) Due credit will be given to neatness and adequate dimensions.
- (4) Assume suitable data wherever necessary.
- (5) Illustrate your answers wherever necessary with the help of neat sketches.

SECTION-A

4 (a) State and explain concept of Minimum Potential Energy Theorem. l. (b) Derive shape function for 9 noded rectangular element and 3 noded triangular element. 10 13 Formulate Constant Strain Triangle (CST). 2. Derive element stiffness matrix for 3-dimensional 8 noded rectangular element. 13 3. (a) What do you mean by Isoparametric element? 3 10 (b) Obtain integral by Gauss Integration for 4 Gauss point. Develop shape function for 2-D, 4 noded isoparametric element, mapped on 2 × 2D. 13

(Contd.)

www.sgbauonline.com

SECTION-B

6.	Develop formulation for 8-noded Isoparametric element for plane stress 2-D.	14
7.	Develop formulation for analysis of axisymmetric structure subjected to axisymmetric	loading
	using Isoporametric 4 noded rectangular ring type element.	13
8.	(a) What do you mean by C ⁰ continuity and C ¹ continuity?	4
	(b) Derive element stiffness matrix for solid triangular prism, 3-D structure.	9
9.	Carry out formulation for Bogner-Fox plate element, 16 d.o.f. ?	13
10.	Formulate the element stiffness matrix for ACM plate element.	13