Second Semester M. E. (Geotechnical Engg.) Examination

SOIL DYNAMICS AND MACHINE FOUNDATION

Paper - 4 SFGE 1

P. Pages: 2

Time: Three Hours]

Max. Marks: 80

Note: (1) Answer any five questions.

- (2) Due credit will be given to neatness and adequate dimensions.
- (3) Assume suitable data wherever necessary.
- (4) Diagrams and Chemicals equations should be given wherever necessary.
- (5) Illustrate your answer necessary with the help of neat sketches.
- (6) Use pen of Blue/Black ink/refill only for writing the answer book.
- 1. (a) How will you approximate the nonlinear force deformation behaviour?
 - (b) What is oblique coordinate system? What is its utility in soil dynamics?
- 2. (a) Discuss with illustration of neat sketch, vibratory motion for a damped system under forced vibration, and hence obtain the solution for the equation of motion for such system.
 - (b) Explain with illustration of sketch the vibratory system due to motion of support and hence deduce the value of Dynamic magnification factor for such system with respect to relative motion.
- 3. (a) What are the various methods for handling a dynamic bearing capacity problem ?
 - (b) What are various types of body waves and surface waves in elastic half space? Explain their salient features.
- 4. (a) Classify the machine foundation and mention the appropriate example for every type.

P.T.O.

- (b) Which type of machine foundation is represented by the system given below:
 - (i) Undamped-two degree freedom system under forced vibration.
 - (ii) Single-mass-spring under free vibrations.

8

- 5. (a) How the geometrical properties affect the machine design? Explain with suitable example.
 - (b) Explain design criteria as per IS code for the foundation of the reciprocating type and impact type machines.
 8
- 6. (a) Describe different methods employed in isolating the existing machine foundation.
 - (b) A resilient pad is supporting a machine having operating frequency of 800 rpm. If it has undergone a static deflection of 0.6 cm under the weight of machine determine the transmissibility and percentage reduction of the transmitted vibrations.

AQ-2940