Second Semester M. E. (Mech.) (Thermal Engg.) Examination (Elective-III)

SOLAR ENERGY

Paper - 2 MTE 5

P. Pages: 3

Time: Three Hours]

Max. Marks: 80

- Note: (1) Separate answer book must be used for each section in the subject Geology, Engineering material of civil branch and separate answer-book must be used for Section A & B in Pharmacy and Cosmetic Tech.
 - (2) All question carry marks as indicated.
 - (3) Answer Three questions from Section A and Three questions from Section B.
 - (4) Assume suitable data wherever necessary.
 - (5) Illustrate your answer necessary with the help of neat sketches.

SECTION A

- 1. (a) What is selective surface? How performance of L.F. P.C. can be improved by using selective surface? Explain with spectral distribution?
 - (b) What kinds of solar radiation falling on earth surface? Also explain nature of reflection from ideal, specular, diffuse and real surface with neat sketch?
- 2. (a) Derive the equation for Transmisivity of the glass cover system of LF.P.C?
 - (b) Explain the different type of solar thermal energy storage. What are the consideration for selection of solar energy storage and its design? 6
- 3. (a) Explain the thermo chemical storage for solar energy. Which are the criteria for judging suitability of Thermochemical reaction?

P.T.O.

www.sgbauonline.com

		b) Expalin with neat sketch, different types of solar still used for water distillation?
4	ł. (a) Explain working principle of solar Pond. What are the operational problem of solar pond? Explain briefly.
	(1	power output of the solar cell. Derive Expression for maximum power output of the solar cell.
5	. (a	circuit current of 250 A/m ² at a cell temperature of 40°C. Calculate the voltage and current density that maximises the power of the cell. What would be the corresponding maximum power output per unit cell Area?
	(b)	What is the temperature requirement for industrial process heat? Explain solar industrial process heating system using a cocentrating collector array.
		SECTION B
6.	(a)	Passive solar heating with next sketch
	(b)	Explain solar absorption refrigeration system on lithium bromide-water absorption cycle.
7.		Find out the collector efficiency factor for the following specification. Overall neat transfer coefficient 8.00 w/m ² k, Spacing 150 mm, tube diameter and bond width = 10 mm, plate thicknes = 0.5 mm plate thermal conductivity = 384 w/mk, tube wall and bond material resistance are zero. The heat transfer coefficient inside the tube is 300 w/m ² k.
	(b)	Derive the equation for collector efficiency factor.
8.	(a)	Explain the testing procedure for liquid flat-plate collectors. 7
	(b)	Explain various designs of Evacuated tube collector with neat sketch. How are they superior to L.F. P.C.?
AQ-	- 2847	2

www.sgbauonline.com

- (a) Sketch and explain different types of concentrating collectors. Discuss their application. List various advantages of concentrating collectors over flat plate collector.
 - (b) Define following terms Related to concentrating collector.
 - (i) Aperture.
 - (ii) Area concentration ratio.
 - (iii) Interrupt factor.
 - (iv) Acceptance angle.

(

- 10: (a) Derive the equation for heat removal factor and instantaneous collection efficiency for a cylindrical parabolic concentrating collector.
 - (b) What are the tracking challenges for concentrating collectors and what are the tracking Requirements? How solar elevation angle.

130

www.sgbauonline.com