Second Semester M. E. (Thermal Engg.) Examination

COMPUTATIONAL FLUID DYNAMICS

Paper - 2 MTE 5

P. Pages: 2

Time: Three Hours	[Max. M	tarks : 80
	Separate answer book must be used for each Section in the subject Engineering material of civil branch and Separate answer – book must for Section A and B in Pharmacy and Cosmetic Tech.	
(2)	All questions carry marks as indicated.	
(3)	Answer three questions from Section A and three questions from B .	n Section
(4)	Due credit will be given to neatness and adequate dimension	ons.
• •	Assume suitable data wherever necessary.	
(6)	Illustrate your answer wherever necessary with the help of neat Use pen of Blue/Black ink/refill only for writing the answer	
	SECTION A	
1. (a) What	are important applications of CFD in engineering? Explain i	n detail.
		. 6
(b) Write	the energy equation and also explain the terms involved.	7
2. Derive cont	inuity equation in cartesian co - ordinates.	14
	· -	
	•	

- 3. (a) Enlist discretization methods and explain any one of them with example.
 - (b) Explain stability analysis in brief.
- 4. (a) State and explain the difference between explicit and implicit methods with suitable example.
 - (b) Explain Gauss Scidel method used in computational fluid dynamics. 7

AQ-2849 P.T.O.

5. Derive Navier Stokes equation for incompressible flow.

13

SECTION B

- 6. Using Taylor series expansion, derive finite difference formulation of Lax Wendroff method.
- 7. (a) Explain explicit relaxation technique.

7

(b) Explain the philosophy of pressure correction technique.

6

- 8. Consider flow between two parallel plates separated by a distance 2 H. The fluid is driven between the plates by an applied pressure gradient in the X direction. Assume laminar flow of a constant density fluid with constant viscosity. Determine the velocity distribution of the fluid as a function of velocity.
- 9. Compare the first two steps of the numerical solution of the inviscid Burgers equation $0 \le x \le 1$, t > 0.

$$\frac{\partial u}{\partial t} + \frac{\partial (\frac{1}{2}u^2)}{\partial x} = 0$$

subject to initial boundary condition

$$u(x,0)=x, x>0$$

 $u(0,t)=0, t>0$

compute the numerical solution with the exact solution;

$$u = \frac{x}{1+t}$$

taking $\triangle x = 0.2$ and $\frac{\triangle t}{\triangle x} = 0.5$

13

10. Explain Alternating Direction Implicit technique.

13

AQ-2849

2

130