Faculty of Engineering & Technology

M.Tech. (Membrane & Separation Tech.) (F.T.) Second Semester Examination

ADVANCED REACTOR DESIGN

Paper-2 MST 4

Time—Three Hours]

[Maximum Marks-80

INSTRUCTIONS TO CANDIDATES

- (1) All questions carry marks as indicated.
- (2) Answer any SIX questions.
- (3) Due credit will be given to neatness and adequate dimensions.
- (4) Assume suitable data wherever necessary.
- (5) Diagrams and Chemical equations should be given wherever necessary.
- (6) Illustrate your answers wherever necessary with the help of neat sketches.
- (7) Use of slide rule, Logarithmic tables, Steam tables, Mollier's chart, Drawing instruments, Thermodynamic tables for moist air, Psychrometric charts and Refrigeration charts is permitted.
- (8) Discuss the reaction, mechanism wherever necessary.
- (9) Use pen of Blue/Black ink/refill only for writing the answer book.
- Derive performance equation for MFR. From it derive design equations for :
 - (i) CVR FO
 - (ii) CVR SO
 - (iii) VVR FO
 - (iv) VVR SO.

14

UBS-50582

(Contd.)

2. On the assumption that the closed vessel is represented by dispersion model, calculate the D/uL:

t (min)	CE(g/L)
0	0
55	3
10	5
15	5
20	4
25	2
30	1 1 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
35	0

13

- 3. Derive kinetic expression for VVR for:
 - (i) Zero order
 - (ii) FO
 - (iii) SO.

13

 Calculate the amount of catalyst required in a PBR to achieve 80 % conv of 1000 m³/L of pure gaseous A. For A → R at 5.747 atm and 427° C

$$-r_{A} = \frac{50 \, C_{A}}{1 + 0.02 \, C_{A}}.$$

- 5. Two reactors are connected in series. Derive design equations for second reactor for :
 - (i) MFR and FO
 - (ii) MFR and SO
 - (iii) PFR and FO
 - (iv) PFR and SO.

13

UBS-50582

2

(Contd.)

6 Predict the conversion of glucose to sorbitol in a TPSR using pure H₂ of 200 atm and 150° C. Catalyst used is Raney Ni.

$$H_2(g \to l) + C_6 H_{12} O_6(l) \xrightarrow{Ni} C_6 H_{14} O_6(l)$$

- $r_A = k' C_A^{0.6} C_B$

$$k' = 5.96 \times 10^{-6} \frac{m^3}{kg.^3} \left(\frac{m^3}{mol}\right)^{0.6}$$

Gas stream :-
$$V_g = 0.2 \text{ m}^3/\text{s}$$

$$H_A = 277600 \text{ pa.m}^3/\text{mol}$$

Liq stream :-
$$V_L = 0.1 \text{ m}^3/\text{s}$$

$$C_{BO} = 2000 \text{ mol/m}^3$$

Reactor:
$$V_r = 2m^3$$

Catalyst:-
$$F_s = 0.6$$

$$d_p = 10 \mu m$$

$$I_s = 8900 \text{ kg/m}^3$$

$$D_c = 2 \times 10^{-9} \text{ m}^2/\text{s}$$

Transport :-
$$(k_{Al9i})_{g+1} = 0.05 \text{ s}^{-1}$$

$$k_{AC} = 10^{-3} \text{ m/s}.$$

 Develop an expression in terms of total conversion of A for the selectivity of prod B wrt. D for the consecutive reaction of FO in CSTR.

the consecutive reaction of FO in CSTR.

$$k_1 \quad k_3 \quad K_3$$

A \longrightarrow B \longrightarrow D

At t = 0, C_A = C_{AO}, C_{BO} = C_{DO} = 0

 $k_1/k_3 = 2$.

13

14

UBS-50582

3

(Contd.)

9. For Solid catalytic FO irr

$$\epsilon_{A} = \frac{\tanh M_{T}}{M_{T}}$$

As an efficient chemical engineer you would wish to have high or low M_T ? What measures you will take to have such value of M_T ?

Discuss design norms to decide the value of \in_A based on M_T .

13

10. Acetic anhydride is to be hydrolised in 3 CSTR in series :

$$V_o = 582 \text{ cc/min}$$

Compute % hydrolysis achieved upto each reactor

$$k = 0.158 \text{ min}^{-1}$$
.

If you go for single CSTR having Volume equal to total Volume of earlier 3 CSTR, how much conversion you will get?