AQ-2710

Faculty of Engineering & Technology

M.E. (Computer Engg.) (Full Time) Second Semester (C.G.S.) Examination

EMBEDDED SYSTEM DESIGN

Paper—2 KMEF 3

Time	hree Hours] [Maximum Mar	num Marks—80		
		INSTRUCTIONS TO CANDIDATES		
	(1)	All questions carry marks as indicated.		
	(2)	Assume suitable data wherever necessary.		
	(3)	Illustrate your answers wherever necessary with the help of neat sketches.		
	(4)	Use pen of Blue/Black ink/refill only for writing the answer book.		
1.	(a)	Define embedded system with example. List the features and application areas of embedded		
		system.	7	
	(b)	How does Kernel decide which task has to done?	6	
		OR		
2.	(a)	Explain software architecture of embedded system.	7	
	(b)	Compare Threats and Mutex. Explain inter thread communication.	6	
3.	(a)	Explain Von Neumann architecture Vs. Hardware architecture and PIC.	7	
	(b)	Write the features of RISC implemented by PIC 18 microcontroller.	7	
		OR		
4.	(a)	Explain the PIC 18 configuration register and use of oscillator clock source in it.	7	
	(b)	Explain how interrupt precocity is set in PIC 18.	7	
UBS—5057			(Contd.)	

5.	(a)	State and explain	different branch condition.	6		
	(b)	LEDs are connect from OOH to FF	ted to bit in Port B and Port C. Write a C18 program that shows the	e coun		
			OR			
6	(a)	What are the content of WREG after executing the following code:				
		MOVLW	Ox55			
		MOVWF	PORTB			
		MOVWL	OxAA			
		MOVWL	PORTB			
		BRA	OVER.	7		
	(b)	Write down the steps in programming the A/D converter using polling.				
7.	(a)	Write the notation	ns and assumption of clock driven scheduling.	6		
	(b)	Explain the concept of sporadic job scheduling.				
			OR			
8.	(a)	Explain in brief,	how to handle frame overrun and how to do mode changes?	7		
	(b)	Explain, in general, the structure of cyclic schedules.				
9.	(a)	Explain the schedulability test for fixed priority tasks with arbitrary response time.				
	(b)	What are the sufficient schedulability conditions for RM and DM algorithm?				
			OR			
10.	(a)	Explain the comparison between fixed priority and dynamic priority algorithm.				
	(b)	Explain, in brief, schedulability test for EDF algorithm.				
11.	(a)	Explain, in brief, consumption and replenishment rules of constant utilization server.				
	(b)	Explain, how bandwidth preserving server works?				
	•		OR			
12.	(a)	What is deferrable	e server ? Explain, in brief, the operation of it.	7		
	(b)	Explain, the simple acceptance test in fixed priority system.				
IRC.	_5057	ر ا				