Faculty of Engineering & Technology M.E. Semester—II Examination ADAPTIVE SIGNAL PROCESSING Paper—2 ENTC 1 Sections—A & B

Time: Three Hours]

[Maximum Marks: 80

INSTRUCTIONS TO CANDIDATES

- (1) All questions carry marks as indicated.
- (2) Answer THREE questions from Section A and THREE questions from Section B.
- (3) Due credit will be given to neatness and adequate dimensions.
- (4) Assume suitable data wherever necessary.
- (5) Use pen of Blue/Black ink/refill only for writing the answer book.

SECTION-A

1. (a) The sequences y(n) and u(n) are related by the difference equation

$$y(n) = u(n + a) - u(n - a)$$

where a is a constant. Evaluate the autocorrelation function of y(n) in terms of that of u(n).

(b) State and explain any three properties of the Correlation Matrix.

6

OR

- 2. (a) Consider an autoregressive process u(n) of order two described by the difference equation, $u(n) = u(n-1) 0.5 \ u(n-2) + v(n)$ where v(n) is white noise with zero mean and variance 0.5.
 - (i) Write the Yule-Walker equations for the process.
 - (ii) Solve these two equations for autocorrelation function values r(1) and r(2).
 - (iii) Find the variance of u(n).

8

(Contd.)

- (b) Consider a correlation matrix R for which the inverse matrix R⁻¹ exists. Show that R⁻¹ is Hermitian.
- 3. (a) Consider a Wiener filtering problem characterized as follows. The correlation matrix R of the tap-input vector u(n) is:

$$R = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}.$$

The cross-correlation vector between the tap-input vector $\mathbf{u}(\mathbf{n})$ and the desired response $\mathbf{d}(\mathbf{n})$ is $\mathbf{p} = [0.5, 0.25]^T$

- (i) Evaluate the tap weights of the Wiener filter.
- (ii) What is the minimum mean-square error produced by this Wiener filter?
- (iii) Formulate a representation of the Wiener filter in terms of the eigen values of matrix R and associated eigen vectors.
- (b) Explain solution of the Wiener-Hopf equations for linear transversal filter. 5

OR

- 4. (a) Suppose you are given the two time series u(0), u(1),, u(N) and d(0), d(1),, d(N) both of which are realizations of two jointly wide-sense stationary processes. The series are used to supply the tap inputs of a transversal filter of length M and the desired response, resp. Assuming that both of these processes are jointly ergodic, derive an estimate for the tap-weight vector of the Wiener filter by using time averages. 6
 - (b) The statistical characterization of a multiple linear regression model of order four is as follows:

The correlation matrix of the input vector u(n) is:

$$R_4 = \begin{bmatrix} 1.1 & 0.5 & 0.1 & -0.1 \\ 0.5 & 1.1 & 0.5 & 0.1 \\ 0.1 & 0.5 & 1.1 & 0.5 \\ -0.1 & 0.1 & 0.5 & 1.1 \end{bmatrix}$$

The cross correlation vector between the observable data and the input vector is

$$p_4 = [0.5, -0.4, -0.2, -0.1]^T$$

UBS-50624

(Contd.)

2

		The variance of the observable data d(n) is:	
		$\sigma_d^2 = 1.0.$	
		The variance of the additive white noise is:	
		$\sigma_4^2 = 0.1.$	
		A Wiener filter of varying length M operates on the input vector $u(n)$ as input and the observable data $d(n)$ as the desired response. Compute and plot the mean-squarerror produced by the Wiener filter of $M = 0, 1, 2, 3, 4$.	on are 7
5.	(a)	The steepest descent algorithm becomes unstable when the step-size parameter μ assigned a negative value. Justify the validity of this statement.	is 6
	(b)	Consider the use of a white-noise sequence of zero mean and variance σ^2 as the inp to the LMS algorithm. Evaluate :	out
		(i) The condition for convergence of the algorithm in the mean square.	
		(ii) The excess mean-square error.	7
		OR	
6.	(a)	In the method of steepest descent, show that the correction applied to tap-weight vec after $n + 1$ iterations may be expressed as:	tor
		$\delta w(n+1) = \mu E[u(n)e * (n)],$	
		where $\mu(n)$ is the tap-input vector and $e(n)$ is the estimation error. What happens to taking adjustment at the minimum point of the error-performance surface?	this 7
	(b)	The LMS algorithm is used to implement a dual input, single-weight adaptive no canceller. Set up the equations that define the operation of this algorithm.	oise 6
		SECTION—B	
7.	(a)	State and explain the three important properties of the innovation $\alpha(n)$.	6
	(b)		7
	•	OR	
8.	Ex	plain in detail Kalman filtering.	13
UB	s—50		ntd.)

www.sgbauon line.com

9.	(a)	Give some examples of applications where adaptive filtering is done.	6
	(b)	Explain convergence analysis of the RLS algorithm.	7
		OR	
10.	Der	ive the mean square error in RLS algorithm with optimization.	13
11.	(a)	What is the need for adaptive equalization in a digital communication system? Ex	
	(b)	Discuss the gradient adaptive lattice algorithm.	7
	(-)		7
		OR	
12.	(a)	How is the effect of echo minimized in a telephone communication?	7
	(b)	Explain with a neat labelled diagram the removal of ocular artifacts from ECG adaptive filtering.	using
		- The state of the	