AQ-2753

Faculty of Engineering & Technology

M.Tech. (Chemical Engg.) Second Semester (CBS) Examination

CHEMICAL REACTION ENGINEERING

Paper-2 CE 1

Time—Three Hours]

[Maximum Marks-80

INSTRUCTIONS TO CANDIDATES

- (1) All questions carry marks as indicated.
- (2) Question No. 1 is compulsory.
- (3) Due credit will be given to neatness and adequate dimensions.
- (4) Assume suitable data wherever necessary.
- Diagrams and Chemical equations should be given wherever necessary.
- (6) Illustrate your answers wherever necessary with the help of neat sketches.
- (7) Solve any five from remaining.
- (8) Use pen of Blue/Black ink/refill only for writing the answer book.
- 1. A small reaction bomb lifted with a sensitive pressure measuring device is flushed out and then filled with pure reactant A to one atm pressure. The operation is carried out 298 K, at which the reaction does not proceed to any appreciable extent. The temp is then rapidly increased at 373 K by plunging the bomb into boiling water and the following pressure data are obtained:

t, min	p, atm
1	1.14
2	1.04
3	0.982

UBS---50583

(Contd.)

t, min	p, atm
4	0.940
5	0.905
6	0.870
7	0.850
8	0.832
9 .	0.815
10	0.800
15	0.754
20	0.728

The stoichiometry of the reaction is $2A \rightarrow R$. After leaving the bomb in the bath over the weeks period the content are analysed for A and no A is detected.

Find a rate expression which can satisfactorily represents this data. (Illustrate your answer analytically and graphically).

A homogenous liquid phase reaction with stoichiometry and kinetics.

 $A \rightarrow S_1 - Y_A = KC_A^2$ takes place with 50 % conversion in a MFR:

- Find the conversion if this reactor is replaced by another mixed flow reactor having volume 6 times that of the original reactor-all else remains unchanged.
- (ii) Find the conversion if the original reactor is replaced by a PFR of the same size all else are remain unchanged.
- 3. Find a rate equation for gas phase decomposition A → R + S occurring isothermally in MFR from the following data:

Run	τ	X _A
1	0.423	0.22
2	5.10	0.63

(Contd.)

UBS---50583

Run	τ	X,
3	13.5	0.75
4	44	0.88
5	192	0.96

 X_A values are obtained with i,c all runs are conducted with $C_{A0} = 0.002 \text{ mol/l}$.

- 4. Substance A reacts according to second order kinetics. 95 % conversion of A is achieved in a single flow reactor. We buy a second reactor identical to the first. For the same 95 % conversion by how much is the capacity increased if we operate these two reactors in parallel or in series?
 - (i) The reactors are both plug flow.
 - (ii) The reactors are both mixed flow.

13

13

13

13

5. Reactant A in a liquid produces R and S by the following reaction:

$$A \leq_{S}^{R}$$

Both these reactions are first order A feed with $C_{AO} = 1$, $C_{RO} = 0$ and $C_{SO} = 0$ enters in two MFRs in series ($\tau_1 = 2$ min, $\tau_2 = 5$ min,). The composition in first reactor is $C_{A1} = 0.40$, $C_{R1} = 0.40$ and $C_{S1} = 0.2$. Find the composition leaving the second reactor.

6 For adiabatic operation prove that the conversion is related with temp by the given equation,

$$\chi_A = \frac{C_P \Delta T}{-\Delta H_R}$$
 and

for non-adiabatic operations it relates as :
$$\chi_A = \frac{C_p \Delta T - Q}{-\Delta H_R}$$
.

- Explain in detail the mass transfer within packed bcd reactors.
- 8. (a) How pore diffusion resistance distorts the kinetics of reaction with Deactivating catalysts?
 - (b) Why catalysts needs regeneration? How can it be regenerated?

UBS—50583 3 (Contd.)

Gaseous A decomposes on a solid catalyst as per the following reaction :

$$A \rightarrow R$$
 with $-r_A = KC_A^2$

A pilot plant scale tubular reactor packed with 2 *l* of catalyst is fed with 2 m³/h of pure A at 300° C and 20 atm. 65 % A is converted. It is desired to treat 100 m³/h of feed gas at 40 atm and 300° C consisting of 60 % A and 40 % diluent in a larger plant to obtain 85 % conversion of A. Find the internal volume of reactor.

10. The elementary liquid phase reaction A + B → R + S is carried out in a PFR for equimolar amounts of AdB (C_{Ao} = C_{Bo} = 0.9 mol/l) 94 % conversion is achieved in it. If a CSTR 10 times as large as the PFR were arranged in a series with existing unit, which units needs to be arranged first (in series) to enhance the production rate?

UBS---50583