Faculty of Engineering & Technology M.E. Semester—I [Full Time] (Digital Electronics) (C.B.S.) Examination RF SYSTEM DESIGN

Elective-I

Paper—1 UMEF 3

Sections—A & B

Time: Three Hours]

[Maximum Marks: 80

INSTRUCTIONS TO CANDIDATES

- (1) All questions carry marks as indicated.
- (2) Answer THREE questions from Section A and THREE questions from Section B.
- (3) Due credit will be given to neatness and adequate dimensions.
- (4) Assume suitable data wherever necessary.
- (5) Illustrate your answers wherever necessary with the help of neat sketches.
- (6) Use pen of Blue/Black ink/refill only for writing the answer book.

SECTION--A

1. (a) Explain the frequency response of RF field effect transistors.

7

(b) Explain the small signal BJT model.

7

- 2. (a) Explain the construction and functionality of High Electron Mobility Transistors. 7
 - (b) For a particular Si pn-junction the doping concentrations are given to be $N_A = 10^{18}$ cm⁻³ and $N_D = 5 \times 10^{15}$ cm⁻³ with an intrinsic concentration of $n_i = 1.5 \times 10^{10}$ cm⁻³. Find the barrier voltages for $T = 300^{\circ}$ K.

3. (a) Discuss a method used to convert lumped elements to transmission line sections. 7

(b) Explain the design of class A power amplifier.

6

UBS--50594

(Contd.)

www.sgbauonline.com

4.	(a)	Explain Bandwidth enhancement in high frequency amplifier design.	7
••	(b)	Explain the following related to filter implementation:	
	` ,	(i) Unit elements	_
		(ii) Huroda's Identities.	6
		SECTION—B	
5.	(a)	Explain in brief single-ended LNA and differential LNA design.	6
	(b)		
	(-)	(i) Conversion gain	
		(ii) Noise figure	
		(iii) Linearity and isolation	8
		(iv) Spurs.	7
6.	(a)	·	6
	(b	, -	7
7.	(a	•	6
	(b	Explain second-order PLL model.	tector.
8	. (a	What are sequential phase detectors? Hence, explain SR flip-flop as a phase de	7
	(t	e) Explain the following related to PLL design:	
		(i) Loop filters	6
		(ii) Charge pumps.	O