First Semester M. E. Electrical (Electrical Power System) Examination

POWER SYSTEM OPTIMIZATION

Paper - 1 SEPS 1

P. Pages: 2

Time: Three Hours]

[Max. Marks : 80

- Note: (1) Separate answer book must be used for each section in the subject Geology, Engineering material of civil branch and Separate answer book must be used for Section A and B in Pharmacy and Cosmetic Tech.
 - (2) All question carry equal marks.
 - (3) Answer Two questions from Section A and Two questions from Section B.
 - (4) Assume suitable data wherever necessary.
 - (5) Use pen of Blue/Black ink/refill only for writing the answer book.

SECTION A

1. (a) Minimize

$$F(x) = \frac{1}{2} \left(x_1^2 + x_2^2 + x_3^2 \right)$$

Subject to $g_1(x) = x_1 - x_2 = 0$

$$g_2(x) = x_1 + x_2 + x_3 = 1$$

using Lagrange's multiplier method.

10

(b) Solve the following LPP using simplex method:

Minimize $f(x) = 2x_1 + x_2$

Subject to $3x_1 + x_2 = 3$

$$4x_1 + 3x_2 \ge 6$$

$$x_1 + 2x_2 \le 3$$

and $x_1, x_2 \ge 0$.

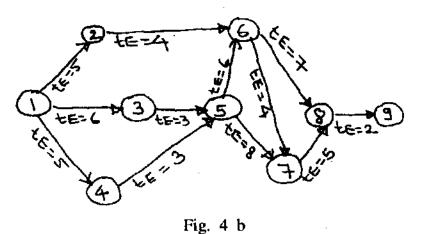
10

- 2. (a) Maximize f(x) = x(x-1.5) in the interval (0-1) by Fibonacci method using N = 6.
 - (b) What are the various steps in unrestricted search technique of elimination method? What are the limitations?

AQ-2728

P.T.O.

3. (a) Use steepest descent method to solve :


Minimize $f(x) = 2x_1^2 + x_2^2$ starting from point $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ perform three iterations.

10

(b) Mathematically formulate the Transportation Problem as a L.P.P. Explain degeneracy in T. P. 10

SECTION B

- 4. (a) Explain the following in detail:—
 - (i) Multistage decision process and its representation.
 - (ii) Conversion of final value problem into initial value problem.
 - (b) Determine the critical path for the network shown in figure 4 b. The numbers indicate time in weeks.

10

- 5. (a) How the fitness function is modified when Genetic Algorithm is used for unconstrained optimization?
 - (b) What are the various advantages of GA over traditional methods?
- 6. Formulate the optimal power flow problem. Explain in detail NLP technique to solve optimal power flow problem.

AQ-2728

330