First Semester M. E. (Mech. Engg.) (Thermal Engg.) Examination

ADVANCED HEAT TRANSFER

1 MTE 4

P. Pages: 3

Time: Three Hours }

[Max. Marks : 80

- **Note**: (1) Answer three questions from Section A and three questions from Section B.
 - (2) Due credit will be given to neatness and adequate dimensions.
 - (3) Assume suitable data wherever necessary.
 - (4) Illustrate your answer wherever necessary with the help of neat sketches.
 - (5) Use of slide rule, logarithmic tables, Steam tables, Mollier's Chart, Drawing instrument, Thermodynamic table for moist air, Psychrometric Charts and Refrigeration charts is permitted.
 - (6) Use of Heat and Mass Transfer Data Book is permitted.
 - (7) Use pen of Blue/Black ink/refill only for writing the answer book.

SECTION A

1. (a) State the general heat conduction differential equation in cylindrical coordinates. Using this equation, derive the expression for maximum temp. in a solid cylinder, considering one dimensional steady state heat conduction.

- (b) A current of 350 amp passes through a stainless steel wire, 2.5 mm dia and 2 m long. The resistivity and thermal conductivity of the vire are 70 x 10^{-8} Ω m and 20 W/mK resp. If the wire is submerged in a fluid maintained at 50 °C and convective heat transfer coeff on wire surface is 3500 W/m² K, calculate the steady state temp at the centre and at the surface of wire.
- 2. Explain briefly graphical method for solving two dimensional steady state conduction problem. Also discuss the significance of the conduction shape factor in this method. 8
 - (b) The inside dimensions of a furnace are 3 m x 2.5 m x 2 m. The walls are 0.2 m thick and have thermal conductivity of 1.3 W / mK. If the temperatures at the inner and outer surfaces are 300 °C and 100 °C resp. calculate the rate of heat loss.

AQ-2834

P.T.O.

www.sgbauonline.com

- 3. (a) What are Heisler charts? Discuss their significance in solving transient conduction problems.
 - (b) A 6 cm thick large steel plate (k=42.6 W/mK, α=0.043 m²/h), initially at 440 °C is suddenly exposed on both sides to an environment with convective heat transfer coefficient 235 W/m² K and temp. 50°C. Determine the centre line temp. and temp. .inside the plate 15 mm from the mid plane after 4.3 minutes.
- 4. (a) What is thermal boundary layer? Discuss its formation for flow of a cold fluid over a hot horizontal surface.
 - (b) Air at 1 atm and 35°C flows across a 5 cm dia cylinder at a velocity of 50 m / sec. The cylinder surface is maintained at 150°C. Calculate the heat loss per unit length of the cylinder.
 Use Nu = CR^m · P_m^{1/3}.
- 5. (a) How are the velocity and temp fields developed, in natural convection, in front of a vertical plate which is maintained at a temp, higher than the surrounding fluid? Discuss and also sketch the corresponding boundary layers.
 - (b) A horizontal pipe 0.3048 m in dia is maintained at a temp of 250°C in a room where the ambient air is at 15°C. Calculate heat loss per meter of length.

SECTION B

- 6. (a) What is radiation shape factor? State and prove the reciprocity theorem.
 - (b) Two parallel rectangular surfaces 1 m by 2 m are opposite to each other at a distance of 4 m. The surfaces are black and at 100°C and 200°C. Calculate the heat exchange by radiation between the two surfaces.
- 7. (a) Discuss the concept of electrical network analogy for radiant heat exchange between non black bodies.

AQ-2834

- (b) 'Understanding and analysis of radiation from gases and vapours is different than that for solids'. Explain.
- 8. (a) Discuss the Nusselt theory of laminar flow film condensation on a vertical plate.
 - (b) Saturated steam at $110^{\,0}$ C condenses on the outside of a bank of 64 horizontal tubes of 25 mm outer dia, 1 m long arranged in an 8 x 8 square array. Calculate the rate of condensation if the tube surface is maintained at $100^{\,0}$ C. The properties of saturated water at $105^{\,0}$ C are $-\varrho = 954.7 \, \text{kg/m}^3$, $k = 0.684 \, \text{W/mK}$, $\mu = 271 \, \text{x} \, 10^{-6} \, \text{kg/m}$ sec and $h_{\text{fg}} = 2243.7 \, \text{kJ/kg}$.
- 9. (a) Water at 1 atm boils in a stainless steel kitchen pan with △T = 8 °C. Estimate the heat flux which will be obtained. If the same pan operates as a pressure cooker at 1.7 atm, what percent increase in heat flux might be expected?
 - (b) What is film cooling and transpiration cooling? Discuss their applications.
- What is a heat pipe? How are the heat pipes classified? Discuss the construction, working and applications of heat pipes.

www.sgbauonline.com