First Semester M. E. (Electronics and Power Engg.) Examination

MODELLING AND ANALYSIS OF ELECTRICAL MACHINES

1 EEPME 5

P. Pages: 3

Time: Three Hours]

| Max. Marks: 80

- Note: (1) All question carry equal marks.
 - (2) Answer Three questions from Section A and Three questions from Section B.
 - (3) Due credit will be given to neatness and adequate dimensions.
 - (4) Assume suitable data wherever necessary.
 - (5) Use pen of Blue/Black ink/refill only for writing the answer book.
- 1. (a) Write the volatge equations for Kron's primitive machine in matrix form.

 What observations are made from the impedance matrix of this machine?
 - (b) Obtain an expression for electrical torque of Kron's primitive machine. Show that no torque is produced by interaction between the flux and current on the same axis.

OR

- 2. (a) Explain various conventions followed in development of generalised machine theory.
 - (b) Draw and explain basic two pole machine representing.
 - (i) Synchronous machine with dampers.
 - (ii) D.C. shunt machine without interpoles.

6

3. (a) Explain the term "Invariance of Power" as applied in electrical machines.

6

(b) If the currents are given in complex notation, derive an expression for electrical torque T_e, for any number of poles.

OR

4. (a) List the various limitations of generalised theory of electrical machines.

6

P.T.O.

AO - 2884

www.sgbauonline.com

- (b) What do you understand by the term "Linear Trasformations" used in elelctrical Machine? Explain with suitable example.
- 5. (a) Draw an equivalent circuit for a poly phase induction motor. What is represented by various parameters involved in this circuit?
 - (b) A three phase induction motor develops a maximum torque 5 time the full load torque at a slip of 0.3. Rotor resistance is $0.05\,\Omega$ per phase. The stator and rotor losses can be neglected.

Calculate:-

- (i) Slip at full load torque and
- (ii) Staring torque in terms of full load torque.

7

OR

6. (a) If the stator resistance of a polyphase Indiction Motor is neglected, show that its torque can be expressed as

$$T_e = \text{Tem} \cdot \frac{2}{\frac{S_m.T}{S} + \frac{S}{S_m.T}}$$

- (b) A 3-phase squirrel cage induction motor has rotor starting current 6 times the full load value. The motor has a full load slip of 5% Calculate:—
 - (i) Starting torque in terms of full load torque.
 - (ii) Maximum torque in terms of full load torque.
 - (iii) Slip of maximum torque.

7

SECTION B

- 7. (a) Explain how Park's transformation transform equations in a, b, c variables to d, q, 0 variables.
 - (b) A three phase star connected 50 Hz synchronous generator has direct axis synchronous reactance of 0.65 pu. and quadrature axis synchronous reactance of 0.5 p.u. The genetaror delivers a rated KVA at rated voltage, at a power factor 0.8 lagging. Calculate the open circuit voltage and voltage regulation. Resistance drop at full load is 0.02 p.u.

AQ-2884

OR

- 8. (a) What are the various basic parameters of synchronous machine? Derive expression for armature to field mutual inductance and armature self inductance for salient pole synchronous machine.
 - (b) A three phase, 50 Hz, cylindrical rotor synchronous machine has following parameters self inductance for phase $\alpha = 3.15$ mH Armuture leakage inductance = 0.35 mH. Calculate the mutual inductance between armature phases and its synhronous reactance.
- 9. (a) Show that $T_{\bf d}'' = \frac{T_{\bf do}'' \cdot X''_{\bf d}}{X_{\bf d}'}$ 5
 - (b) Two similar 3-phase star connected alternators supply in parallel a load of 1000 KW at 10 KV at 0.8 p.f. lagging, sharing the load equally. Synchronous impedance of machine is 4 + j50 ohm per phase. Field excitation of first machine is so adjusted that its armature current is 50 A lagging. Determine the armature current and p.f. of second machine and excitation of first machine.

OR

- 10. (a) Explain in detail various types of reactances associated with an alternator and how they are caused.
 - (b) A synchronous motor connected to infinite bus and suddenly a load is added on the shaft of motor. Using equal area criterion, analyse the transient stability of system.
- 11. (a) Explain linearization of machine equation for induction machine. 7
 - (b) Derive the small displacement equation of an induction machine with flux linkages per second as state variable. Express the equation in fundamental form.

OR

- 12. (a) Formulate the transfer function $(\Delta wr/W_L)/\Delta T_L$ for synchronous machine.
 - (b) Explain in brief the changes that must be made in linearized equation of 3-phase induction machine.

 $\Lambda Q - 2884$ 3 130

www.sgbauonline.com