AQ - 2882

First Semester M. E. Electrical (Electronics and Power) Engg. (CGS) Examination (New)

ADVANCED DIGITAL SIGNAL PROCESSING

1 EEPME 3

P. Pages: 3

Time: Three Hours]

[Max. Marks: 80

- Note: (1) Assume suitable data wherever necessary.
 - (2) Illustrate your answer wherever necessary with the help of neat sketches.
 - (3) Use pen of Blue/Black ink/refill only for writing the answer book.
- (a) Explain in detail the procedure to obtain impulse response, frequency response 1. of a continuous time signal. 7
 - (b) Obtain the unit step response of constinuous time domain system having unit sample response $h(n) = (\frac{1}{2})^n u(n)$.

OR

(a) Explain in detail the properties of the systems. 2.

7

- (b) Explain in detail with neat diagram the procedure of convolution of continuous time system with example. 7
- 3. (A) Explain Quantization errors in detail.

(B) Determine the direct forms I and II realization for a third order IIR transfer

H (z) =
$$\frac{0.28z^2 + 0.319z + 0.04}{0.5z^3 + 0.3z^2 + 0.17z - 0.2}$$

6

OR

Determine the parallel realization of the IIR digital filter transfer function.

(a)
$$H(z) = \frac{3(2z^2 + 5z + 4)}{(2z+1)(z+2)}$$

AQ-2882

P.T.O.

(b) II (z) =
$$\frac{3z (5z-2)}{(z+1/2)(3z-1)}$$

5. A Low-pass filter is tobe designed with the following desired frequency response.

$$\text{Hd } (e^{jw}) = \begin{cases} e^{-j2w} & -\frac{\pi}{4} \leq W \leq \frac{\pi}{4} \\ 0 & \frac{\pi}{4} < |W| \leq \pi \end{cases}$$

Determine the filter coefficient hd[n] if the window function is defined as

$$W[n] = \begin{cases} 1 & 0 \le n \le 4 \\ 0 & \text{otherwise} \end{cases}$$

Also determine frequency response of the desired filter.

13

13

13

OR

6. A filter is to be designed with the following desired frequency response.

$$\operatorname{Hd}(e^{jw}) = \left\{ \begin{array}{ll} 0 & -\frac{\pi}{4} \leq W \leq \frac{\pi}{4} \\ \\ e^{-j2w} & \frac{\pi}{4} < |W| \leq \pi \end{array} \right.$$

Determine the filter coefficients hd[n] if the window function is defined as

$$W[n] = \begin{cases} 1 & 0 \le n \le 4 \\ 0 & \text{otherwise} \end{cases}$$

Also determine the frequency response H(eiw) of the desired filter.

 Explain in detail non-parametric method of power spectrum estimation used for Averaging the periodogrms.

OR

- 8. Explain in detail AR, MA and ARMA models.
- 9. (A) Explain basic Winner filter theory.

2

(B) Explain basic LMS adaptive algorithm.

AQ-2882

www.sgbauonline.com

OR

. 10). (A (B	 Explain need of multirate digital signal processing. Explain polphyase decomposition structure. 	7
11.			7
	()	Explain selection factors of DSP processor.	
	(B)	Explain architecture of General purpose digital signal processor.	7
			6
		OR	
12.	(A) Why we need special purpose DSP-processor?(B) Explain basic requirement of special purpose DSP proc	Why we need special purpose DSP-processor?	
		Explain basic requirement of special purpose DSP processors.	7
			6

www.sgbauonline.com