First Semester M. E. (Electrical and Elect.) Examination

VLSI DESIGN

1 EEEME 4

P. Pages: 3

Time: Three Hours 1

Max. Marks: 80

- Note: (1) Separate answer book must be used for each section in the subject Geology, Engineering material of civil branch and Separate answer-book must be used for Section A and B in Pharmacy and Cosmetic Tech.
 - (2) Answer Three questions from Section A and Three questions from Section B.
 - (3) Due credit will be given to neatness and adequate dimensions.
 - (4) Assume suitable data wherever necessary.
 - (5) Illustrate your answer wherever necessary with the help of neat sketches.
 - (6) Use pen of Blue/Black ink/refill only for writing the answer book.

SECTION A

- 1. (a) Explain the skin effect in copper interconnects. What are the various ways of reducing this effect?
 - (b) Draw and explain a typical design abstraction ladder for digital systems. 7

OR

- 2. (a) Discuss the design-and-conquer approach of chip design using suitable example.
 - (b) Discuss the various CMOS layout design and analysis tools.
- (a) Draw and explain the τ model of estimating the transition time. If values of R_n and C_L are 6.47 kΩ and 1.78 fF, what would be the fall time?
 - (b) Describe the various sources of power dissipation in CMOS circuits and enlist ways of power economy.

OR

4. (a) Calculate the no. of buffers required when a minimum size inverter drives a metal 1 wire that is $20,000\lambda$ x 3λ . The RC values are $R_0 = 6.47$ KQ. Co = 1.78 fF, Rint = 533 Q, Cint = 212 fF. Also compute the 50% delay.

8

AQ-2871

P.T.O.

www.sgbauonline.com

	•	yield.
5.	(a).	Explain the different techniques of cross talk minimization.
	(b)	How would you factorize a function $f=ab+bc+cd$ so as to get minimum glitches in the output ? Explain.
		OR
6.	(a)	Explain gate testing with respect to
	ı	(i) Fault models
		(ii) Stuck-at-0/1 fault
		(iii) Testing difficulty
		(iv) Limitations of fault model.
		(v) Stuck-open model and
		(vi) Delay fault model. 13
		SECTION B
7.	(a)	Draw the block diagram for a four-bit counter with LSSD scan chain. 7
		Discuss the one-phase and two-phase systems for latches and highlight the adavnatges and disadvantages of each.
	•	OR
8.	(a)	What is 'clock skew'? What are the various ways of minimizing the clock skew?
	(b)	Draw the block diagram and explain the use of PLL in clock generation.
	:	
9.	(a)	What are 'active pixel sensors' ? Explain the working with neat diagram.6
	(b)	Explain booth encoding to speed up multiplication. Draw the structure. 7
ΛQ-	-28 71	L 2

OR

10.	(a)	Explain the Wallace tree structure. How is multiplication speeded up wallace tree ?	ir 7
	(b)	What is FPGA? Explain the structure of a typical FPGA and highlight that applications of FPGA.	he 6
11.	(a)	What are the challenges in clock distribution across the chip? Explain the tree and enlist its advantages.	ne 7
	(b)	What is the need of validation during this assembly a very	6
		OR	
12.	(a)	What is 'Global Routing'? Why is it necessary to go through the placement global routing cycle several times?	t- 7
	(b)	State the properties of a desired I/O subsystem and Explain the power supply Input/output bidirectional and analog pads.	_

www.sgbauonline.com