M.E. First Semester (Mechanical Engineering (Thermal Engg.)) (New-CGS)

13507: Fluid Dynamics: 1 MTE 3

ľ	٠	ra,	Ę, C	S		4	
T	ij	me	:	T	hr	ee	Hours

AU - 3361

http://www.sgbauonline.com

Max. Marks: 80

Notes: 1. All question carry equal marks.

- Assume suitable data wherever necessary.
- Illustrate your answer necessary with the help of neat sketches.
- 4. Use of pen Blue/Black ink/refill only for writing book.
- 5. Answer three question from section A and three question from section B.

SECTION - A

1.	a)	Give complete classification of fluid flows, with brief explanation of each.	7
	b)	Define explain and sketch the following terms by giving examples of each: i) Laminar and turbulent flow. ii) Rotational & Irrotational flow. iii) Vortex flow.	7
2.	a)	Distinguish between following terms: i) Steady and unsteady flow. ii) Uniform and nonuniform flow. iii) Streamlines and equipotential lines.	6
	b)	Define, sketch & explain the following terms. i) Velocity potential function ii) Stream function	7
3.	a)	Show that for irrotational motion of incompressible fluid $\nabla \times V = 0$.	6
	b)	Explain the uniform flow with source and sink. Obtain an expression for stream and velocity potential function.	7
4.	a)	What do you mean by continuity equation? Derive it.	6
	b)	A flow field is specified by - $V = i x^2y + iy^2z - k (2xyz + yz^2)$ Calculate velocity and acceleration at point (2, 1, 3)	7
5.	a)	Sketch the flow pattern of an ideal fluid flow past a cylinder with circulation.	6
	b)	A uniform flow of 12 m/s is flowing over a doublet of strength 18 m ² /sec. The doublet is in the line of the uniform flow. Determine: i) Shape of the Rankine oval ii) Radius of Rankine oval iii) Value of stream line function at Rankine circle.	7

http://www.sgbauonline.com

SECTION - B

6.	a)	Describe the phenomenon of Boundary layer separation when the flow takes over a curved surface. What are the different methods of controlling boundary layer separation?	7
	b)	What is sound? How it is generated? How does it travel? Can sound waves travel through vacuum?	7
7.	a)	Explain Prandtl's Meyer function and also find the working equation for it.	6
	b)	A projectile is travelling in air having pressure and temperature as 8.829N/cm^2 and -10°C at a speed of 1200 km/hr. Find the Mach Number and Mach angle. Take K = 1.4 and R = 287J/kg k .	7
8.	a)	Derive the integrated from of the momentum equation for the boundary layer over a flat plate.	6
	b)	For a laminar boundary layer over a flat plate, if the velocity distribution is assumed to be $ -u = A + By + Cy^2 + Dy^3 $ determine its form using the necessary boundary conditions.	7
9.	a)	With the neat sketch explain the development of boundary layer along a thin flat smooth plate held parallel to a uniform flow and explain its salient features.	6
	b)	What do you mean by subsonic, sonic & supersonic flows? What is Mach Number. What is its relation with speed, explain by examples & figures.	7
10.	a)	Discuss Karman's similarity hypothesis in brief.	6
	b)	Explain Eddy viscosity? How does it differ from the viscosity of fluid?	7

http://www.sgbauonline.com