M.E. First Semester (Electrical & Elect.) (New-CGS) 13284: VLSI Design: 1 EEEME 4

P. Pages: 2

ı.

2.

3.

4.

5.

Time: Three Hours

AU - 3399

Max. Marks: 80

Note	2. Assume suitable data wherever necessary. 3. Illustrate your answer necessary with the help of neat sketches. 4. Use of pen Blue/Black ink/refill only for writing the answer book.	
	SECTION - A	
a)	What is the need of IP based design? What are types of IP? Discuss IP life cycle in detail.	7
b)	Describe the relationship between these design abstraction. i) Circuit waveforms Vs. digital signals ii) Digital signals Vs. binary numbers iii) Logic gates Vs. adders	7
	OR	
a)	Discuss the design and conquer approach of chip design using suitable example.	7
b)	Explain reliability and sources of unreliability with the help of both tub curve.	7
a)	Explain domino logic gate structure. Sketch a 3-input dual rail domino OR/NOR gate.	7
b)	Draw and explain pass transistor de characteristics. What is the drawback of pass transistor and how it is overcome by pass gate?	6
	OR	
a)	Discuss various models used to compute delay and transition time.	7
b)	A 3-input majority gate returns a true output if at least two of the inputs are true. A minority gate is its complement. Design a 3-input CMOS minority gate using a single state of logic. Sketch a transistor level schematic and its stick diagram.	6
a)	Give at least one test for stuck at-0 and stuck at -1 faults for each of these static gates:	7

OR

What is the Spanning tree and Steiner tree? Explain in brief various methods used for wiring

b)

(a+h) (c+d)

[(a+b) c]'

optimizations.

i)

http://www.sgbauonline.com

6.	a)	What is the need of transistor sizing? Explain the theory of logical effort and its related parameters w.r.t. transistor sizing.	7
	b)	Explain switch logic network using two different styles with an example. i) Constant inputs ii) Non constant inputs	6
		SECTION - B	
7.	a)	Draw the block diagram and explain the use of PLL in clock generation.	7
	b)	What is clock skew? Is a single phase or two-phase systems mere sensitive to clock skew, justify your answer.	7
		OR	
8.	a)	Explain and compare the following methods of sequencing blocks of combinational logic: i) Flip flop based system ii) 2-phase system iii) Pulsed system	8
	b)	What is a clocked inverter? Explain a D-latch built from the clocked inverters and also draw its stick diagram.	6
9.	a)	Draw and explain the operation of Barrel shifter.	7
	b)	What are 'active pixel sensors'? Explain the working with neat diagram.	6
		OR	
10.	a)	Explain how 3T DRAM is different from 1T DRAM with relevant figures.	7
	b)	Discuss in detail the image sensor architectures.	6
11.	a)	Discuss various Techniques that can be used to reduce and manage power consumption.	7
	b)	Explain the following formats related to floorplanning and placement. i) LEF ii) PDEF	6
		OR	
12.	a)	What is the need of validation during chip assembly. Explain.	6
	b)	What are the challenges is clock distribution across the chip? Explain H tree and give its advantages.	7

http://www.sgbauonline.com