M.E. First Semester (Electrical & Elect.) (New-CGS)

13281 : Advanced Control Systems : 1 EEEME 1

P. Pages: 3

AU - 3396

13

13

8

6

ittp://www.sgbauonline.com

Max. Marks: 80

Time: Three Hours

Notes:

All question carry equal marks.

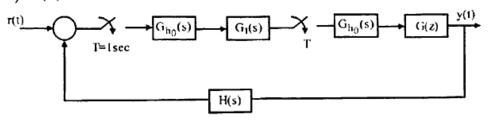
- 2. Answer three question from Section A and three question from Section B.
- Use of pen Blue/Black ink/refill only for writing the answer book.

SECTION - A

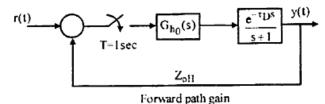
1. Find y(k) for given equation y(k) = r(k) - r(k-1) - y(k-1), $k \ge 0$ where

$$r(k) = \begin{cases} 1 & k \text{ is even} \\ 0 & k \text{ is odd} \end{cases}$$

 $y(-1) = r(-1) = 0$.


OR

Consider a discrete time system described by the differential equation.


$$y(k+2) + \frac{1}{4}y(k+1) - \frac{1}{8}y(k) = 3r(k+1) - r(k)$$

The system is relaxed y(k) = 0, k < 0 and is excited by the input $r(k) = (-1)^k u(k)$ obtained T.k model of discrete time system and hence find the output y(k); k > 0.

3. a) Find Y(z)/R(z) for the input data closed loop system.

b) Consider the sample data system shown. find $\frac{Y(z)}{R(z)}$ when $T_D = 0.4 \sec z$.

OR

4. a) A unity feedback system has open loop transfer function.

$$G(s) = \frac{5}{s(s+1)(s+2)}$$

using Routh stability criteria show that closed loop system is stable.

P.T.O

13

8

13

b) Consider the digital controller defined by

$$D(z) = \frac{u(z)}{E(z)} = \frac{10(z^2 + z + 1)}{z^2(z - 0.5)(z - 0.8)}$$

Draw the parallel realization.

Consider the control system in Fig. 5 the plant transfer func is

$$G(s) = \frac{1}{s(s+2)}$$
 and $T = 0.1 sec.$

- a) Increase plant gain value that results in $k_y = 5$. Then find phase margin.
- b) Design a lead compensator that results in 55° phase margin with $k_y = 5$
- c) Design a lag compensator that results in 55° phase margin with $k_v = 5$.
- d) Obtain band with realized from the designs corresponding to (a), (b), (c)
- e) Is the selection of T=0.1sec justified from closed loop bandwidth considerations.

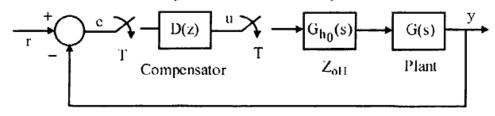
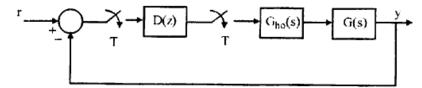


Fig. 5


Consider the feedback control system shown in fig. The plant is described by the Tf

$$G(s) = \frac{k}{s(s+2)}$$

http://www.sgbauonline.com

Design a digital is for the system to meet the fell, specifications.

- Velocity error const k₀ = 6.
- ii) Peak overshoot M_P to step i/p ≤ 15%
- iii) Settling time ts (2% tolerance band) ≤ 5 sec.

A feedback system using digital compensation

SECTION - B

7. In following, realize three different form.

$$G(s) = \frac{s+3}{s^3 + 9s^2 + 24s + 20} = \frac{y(s)}{u(s)}$$

OR

8. a) Find T/F for given model.

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \mathbf{u}$$

$$\mathbf{y} = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}$$

5

13

b) Derive 2-state model for the system with

T.f
$$\frac{y(s)}{u(s)} = \frac{50 (1+s/5)}{s(1+s/2) (1+s/50)}$$

for which system matrix is a companion form matrix.

9. a) State properties of STM in discrete system.

6

8

8

b) Find whether the system u(k+1) = Ax(k) + Bu(k)

$$y(k) = c x(k)$$

$$\mathbf{A} = \begin{bmatrix} 1 & -2 \\ 1 & -1 \end{bmatrix} \mathbf{B} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \mathbf{C} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

is controllable.

OR

10. a) Find state model of system. y(k+3)+5y(k+2)+7y(k+1)+3y(k)=0.

b) Derive necessary conditions for digital control system to be controllable.

6

13

13

nttp://www.sgbauonline.com

8

11. Consider the system

$$\dot{x} = Ax + Bu$$
.

$$y = \ell x + du$$
.

where

$$A = \begin{bmatrix} -2 & -1 \\ 1 & 0 \end{bmatrix}$$
; $B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$; $C = \begin{bmatrix} 0 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 2 & 0 \end{bmatrix}$

Design a full order state observer so that the estimation error will decay in less than 4 seconds.

OR

Consider a plant defined by the foll. State variable model.

$$x(k+1)=fx(k)+Gu(k);$$

$$y(k) = cx(k) + du(k)$$

where

$$F = \begin{bmatrix} 1/2 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}; G = \begin{bmatrix} 1 & 4 \\ 0 & 0 \\ -3 & 2 \end{bmatrix}; C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}; d = \begin{bmatrix} 0 & 4 \end{bmatrix}$$

Design a prediction observer for estimation of state vector x. The observer error poles are required to Lie at $-\frac{1}{2} \pm j \frac{1}{4}$. Give all the relevant observer eq^{ns} & block diag description of observer structure.
