M.E. First Semester (Electrical (Electrical Power System)) (F.T.)

13299: Power System Optimization: 1 SEPS 1

P. Pages: 2

Time: Three Hours

AU - 3256

7

nttp://www.sgbauonline.com

Max. Marks: 80

Notes:

- Answer Two question from Section A and Two question from Section B.
- Due credit will be given to neatness and adequate dimensions.
- Assume suitable data wherever necessary.
- 4. Diagrams and chemical equations should be given wherever necessary.
- 5. Illustrate your answer necessary with the help of neat sketches.
- 6. Use of pen Blue/Black ink/refill only for writing the answer book.

SECTION - A

1. a) Find the extreme points of the function:

 $f(x_1,x_2) = x_1^3 + x_2^3 + 2x_1^2 + 4x_2^2 + 6$.

- b) State and explain Kuhn Tucker conditions for multivariable optimization problem.
- c) Find the dimensions of a box of a largest volume that can be inscribed in a sphere of unit radius.
- a) Consider the following linear programming model and solve it using the two-phase method.

Minimize $z = 12x_1 + 18x_2 + 15x_3$

Subject to:

$$4x_1 + 8x_2 + 6x_3 \ge 64$$

$$3x_1 + 6x_2 + 12x_3 \ge 96$$

 x_1, x_2 and $x_3 \ge 0$

b) Determine the optimum basic feasible solution to the following transportation problem: 10

	Α	В	C	Supply
1	50	30	220] 1
II	90	45	170	3
Ш	250	200	50	4
Demand	4	2	2 .	8

3. a) Write an algorithm for steepest descent method.

Minimize $f = 2x_1^2 + x_2^2$

using steepest descent method with starting point (1, 2). Perform three iterations.

b) Enumerate the limitations of Fibonacci search method and show that the method obtains a reduction ratio: $\frac{L_n}{L_o} = \frac{1}{F_n}$.

10

SECTION - B

 a) Solve the following LP problem by dynamic programming: -Minimize: 10

$$f(x_1, x_2) = 50x_1 + 100x_2$$

Subject to:

$$10x_1 + 5x_2 \le 2500$$

$$4x_1 + 10x_2 \le 2000$$

$$x_1 + 1.5x_2 \le 450$$

and
$$x_1 \ge 0$$
, $x_2 \ge 0$

b) Explain the concept of suboptimization and principle of optimality.

10

14

5. a) Table below shows jobs, their normal time and cost, and crash time and cost for a project.

Job	Normal Time	Cost	Crash Time	Crash Cost
	(days)	(Rs.)	(days)	(Rs.)
(1-2)	6	1400	4	1900
(1 - 3)	8	2000	5	2800
(2-3)	4	1100	2	1500
(2-4)	3	800	2	1400
(3-4)	Dummy	-	-	-
(3-5)	6	900	3	1600
(4-6)	10	2500	6	3500
(5-6)	3	500	2	800

Indirect cost for the project is Rs. 300 per day.

- i) Draw the network of the project.
- ii) What is the normal duration cost of the project?
- iii) If all activities are crashed, what will be the project duration and corresponding cost?
- iv) Find the optimum duration and minimum project cost.
- b) What are various advantages of GA over traditional methods?

6

- 6. a) What are the basic operations used in Genetic Algorithm? What is a fitness function in 10 Genetic Algorithm?
 - b) Explain how Genetic Algorithm can be applied for reactive power optimization in electrical 10 power system.

http://www.sgbauonline.com