attp://www.sgbauonline.com

M.E. First Semester (Electrical (Electronics & Power) Engg.) (New-CGS)

13314 : Power Electronics Converters : 1 EEPME 2

P. Pages: 4

attp://www.sgbauonline.com

Mahahin

AU - 3409

Max. Marks: 80

Notes: 1.

Time: Three Hours

- . Due credit will be given to neatness and adequate dimensions.
- Assume suitable data wherever necessary.
- Illustrate your answer necessary with the help of neat sketches.
- Use of pen Blue/Black ink/refill only for writing the answer book.

SECTION - A

- 1. a) Explain the on state losses in power BJT with suitable response characteristics.
- 7

b) For IGBT circuit shown in figure has the following data: $T_{ON} = 3\mu s$, $t_{OFF} = 1.2\mu s$, $V_{CE\,sat} = 2V$, D (duty cycle) = 0.7,

fs (switching frequency) = 1kHz. Determine:

- i) Average load current
- ii) Conduction power loss
- iii) Switching loss during turn ON
- iv) Switching loss during its turn off.

OR

- a) With the help of switching model and switching characteristics of power MOSFET, explain in detail.
- 7

7

- b) Derive expression for turn off gain of GTO. Also discuss on the magnitude of negative gate current for reliable turn off of a GTO.
- 13
- 3. Design switch mode power supply with the following specifications: $\in_0=12\text{V}$, $I_0=12\text{A}$, $f_s=60\text{kHz}$. AC rectified main with LC filter with 230V, 50Hz. A forward converter operating in continuous conduction mode with demagnetising winding is choosen. Assume all components to be ideal except for the presence of transformer magnetization inductance.

Determine:

- Turn ratio of demagnetizing winding with primary winding at maximum duty cycle of 0.6.
- ii) Voltage rating of switch allowing for 50% voltage of input voltage as spike.
- DC supply current at full load for input reduced by 20%

OR

4. Explain the operation of full bridge converters with their different operating modes. State its advantages and disadvantages. Also derive the expression for output voltage.

13

13

nttp://www.sgbauonline.com

13

5.

Design two winding transformers for CUK converter shown in figure above. These transformers are to be optimized at the operating point shown, corresponding to D=0.5. The steady state converter solution is $V_c = V_g$, $V_{c_2} = V$. Desired Transformer ratio is $n = n_1/n_2 = 5$. The switching frequency is f_s =200kHz corresponding to $T_s = 5\mu s$. Ferrite pot core consisting of magnatics, P-Material is to be used at 200kHz. This material is described by following parameters. $\beta = 2.6$, $k_{fe} = 24.7 \text{ W/T}\beta \text{ cm}^3$. A fill factor of k_u =0.5 is assumed. The power loss of plot = 0.25W. Copper wire, having a resistivity of $\rho = 1.724.10^{-6} \, \Omega - \text{cm}$ is to be used.

OR

6. An inductance of 750μH is needed for a power electronic converter operating at 100kHz. A sinusoidal current of 5A RMS maximum flows through the inductor. The only core available is a double E-core having a dimension a = 1.5cm and made from 3F3 ferrite material. The maximum surface temperature T_s ≤125 °C and the ambient T_a ≤35 °C. A core database is shown below. Litz wire is used for winding

A (cm)	$\Lambda_{\rm w} ({\rm cm}^2)$	A core (cm ²)	$V_w \left(cm^3 \right)$	V _{core} (cm ³)	R _{Qsa} (°C/w)
1.5	3.15	3.38	34.1	45.6	3.4

- Determine the maximum inductance L_{max} that can be wound on the core.
- Determine required air gap length Σg that will result in the maximum core flux density when the current in the inductor is maximum (5 arms). Assume 4 distributed gaps.

AU - 3409

SECTION - B

- 7. Explain the effect of harmonics present in inverter system. Enlist various method in inverter a) for reduction of harmonics. Explain any one of them in detail.

 - b) Explain the pulse width modulation techniques for control of AC output voltage.

from a 450V dc source. Load is of 10Ω per phase and star connected.

6

8. Explain the three phase 120° mode VSI. Also determine for 120° a)

9

mode: (i) rms value of load current: (ii) rms value of thyristor current: (iii) load power if the three phase bridge inverter delivers power to a resistive load

b) What is significance of over modulation. 5

9. With the help of general block diagram of thyristor gate drive circuit, explain operation of a) each component in detail.

6

7

The holding current of thyristors in the single phase full converter of following fig is b) $I_H = 500 \text{mA}$ and delay time is $t_d = 1.5 \mu \text{S}$. The converter is supplied from a 120V-60Hz supply and a load of L=10mH and R=10 Ω . The converter is operated with a delay angle of $\alpha = 30^{\circ}$. Determine the minimum value of gate pulse width I_{G} .

10. The step down converter of figure shown below employs an FCT with a blocking gain μ of 40. The load current $I_0 = 200A$ and the dc input voltage $V_d = 1000V$.

13

nttp://www.sgbauonline.com

- What should be values of R_{G_1} and R_{G_2} in order to ensure proper operation of FCT? Assume R_{G_1} and $R_{G_2} = 1M\Omega$ and include 25% factor of safety in the blocking voltage capability of the circuit.
- Describe the characteristic the MOSFET in this circuit should have, including breakdown voltage and max, average current capability.

P.T.O

7

6

7

- 11. a) Explain working operation of three phase to single phase cycloconverter with neat circuit diagram and waveforms. Give comparison between non-circulating and circulating current operation of cycloconverter.
 - b) Why is the power factor of semi converter better than that of full converter.

OR

- 12. a) Explain with circuit diagram and waveforms the two types of control used for power transfer. Derive the average value of output voltage.
 - b) The triac light dimmer circuit of fig shown is used to adjust the intensity of a 120V, 100W incandescent filament lamp working from 120V, 60Hz mains C = 0.33 μf and R = 3.33kΩ (5 kΩ potentiometer is set at 3.33kΩ). The breakover voltage of the diac is 40V. Determine the firing delay angle α under these conditions.

Triac Light Dimmer Circuit

http://www.sgbauonline.com

Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रुपये पार्य, Paytm or Google Pay से

AU - 3409

http://www.sgbauonline.com