M.E. First Semester (Civil (Structural Engg.)) (New-CGS)

13085 : Theory of Elasticity and Elastic Stability : 1 SFSE 2

	ages: ie:Th	The AU - 34 Max. Marks	
	Not	es: 1. Answer three question from Section A and three question from Section B. 2. Assume suitable data wherever necessary. 3. Illustrate your answer necessary with the help of neat sketches. 4. Use of pen Blue/Black ink/refill only for writing the answer book. SECTION - A	
1.	a)	What is meant by rigid body displacement? Explain in short.	3
	b)	Differentiate between isotropic and orthotropic materials.	4
	c)	Derive the stress equilibrium equation for a three dimensional stress system subjected to body forces in X, Y & Z direction.	7
2.	a)	What is Airy's stress function? Derive the expression. $\frac{\partial^4 \phi}{\partial x^4} + 2 \frac{\partial^4 \phi}{\partial x^2 \cdot \partial y^2} + \frac{\partial^4 \phi}{\partial y^4} = 0$	13
3.		At a point P is an elastic body the state of stress is given by. $\begin{bmatrix} 15 & -7 & +4 \\ -7 & 12 & 6 \\ +4 & 6 & 8 \end{bmatrix}$ Find the value of the principal stress and direction.	13
4.		Derive the equation of deflection curve of a beam of narrow rectangular cross section of unit width simply supported at end carrying UDL of intensity 'q' on the entire span.	13
5,	a)	Derive expression for torsion of elliptical cross section bar.	8
	b)	Explain St. Venant's principle.	5
		SECTION - B	
6.		Explain the following.	-
		a) Inelastic column behaviour.	7
-		b) Imperfect columns. During the appropriate for differential equation for lateral buckling of a bound	6 13
7.		Derive the expression for differential equation for lateral buckling of a beam.	
8.	a)	Explain stable, unstable and neutral equilibrium with suitable example.	5 8
	b)	Derive the expression for critical load for a column fixed at both ends by energy method.	
9.		Explain Galerkin method to find the critical load that one end fixed and other free consider	13
		$y = \Lambda \left(x \ell^3 - 3x^3 L + 2x^4 \right).$	
10.		Evaluate the expression for strain energy due to Saint Venant and warping torsion combination.	13

http://www.sgbauonline.com