M.E. Second Semester (Electronics & Tele.) (Full Time) (C.G.S.- New)

13344 : RF & Microwave Circuit Design 2 ENTC 4

P. Pages: 2

Time: Three Hours

AW - 3637

Max. Marks: 80

6

7

Notes: 1.

- Answer three question from Section A and three question from Section B. 2.
- Due credit will be given to neatness and adequate dimensions. 3.
- Assume suitable data wherever necessary. 4.
- Illustrate your answer necessary with the help of neat sketches. 5.
- Use of pen Blue/Black ink/refill only for writing the answer book.

SECTION - A

- 1. Given the ABCD matrix for a two port network, derive its [s] matrix.
 - Find the Y parameter for two port N/W given b)

OR

- 2. Derive Z parameters in term of h parameters. a)
 - Derive the condition of reciprocal and lossless N/W for S-parameters. b)
- 3. For a load impedance of $Z_L = (60-45j) \Omega$, design two single stub matching networks that transform the load to a $Z_{in} = (75 + j90) \Omega$ input impedance. Assume that both stub and 14 transmission line have a characteristic impedance of $Z_0 = 75\Omega$.

OR

- 4. Design matching network that transforms load $Z_L = 30 + j10$ to $Z_{in} = 60 + j80 \Omega$ matching should contain two series transfer line & shunt capacitance. Assume $Z_0 = 50 \Omega$ at freq. 14
- 5. Explain how stabilization of amplifier for input & output port is attempted through series resistance or shunt conductance.
 - Explain design issues of balanced broadband Amplifier. b)

6

O.T.q

OR

Prove that the maximum power transfer from the source to the amplifier is achieved if the 7 impedance is complex conjugate matched $(Z_{in} = Z_s)$. a) 6. 6 RF amplifier has $S_{11} = 0.3 \angle -70^\circ$, $S_{21} = 3.5 \angle 85^\circ$, $S_{12} = 0.2 \angle -10^\circ$, $S_{22}=0.4\ \angle -45^\circ$ with i/p voltage same. $Z_s=40$. Assume $Z_0=50$ find G_T , G_{TU} , G_A . b) SECTION - B 6 Describe in brief the high frequency oscillator configuration. A typical varactor diode has an equivalent series resistance of 45Ω and a capacitance 8 7. a) ranging from 10 Pf to 30 Pf for reverse voltages between 30V and 2V. Design a voltage controlled clapp-type oscillator with center frequency of 300 MHz and $\pm 10\%$ tuning b) capability. Assume that the trans conductance of the transistor is constant and equal to $g_m = 115 \text{ ms.}$ OR 7 A crystal is characterized by the parameters a) $L_q = 0.1H$, $R_q = 25\Omega$, $C_q = 0.3$ Pf & $C_o = 1$ Pf 8. Determine the series and parallel resonance frequencies. 7 Explain double balanced mixer design in detail. b) Explain the losses in microstrip lines. 9. a) 7 Explain even and odd mode analysis of coupled microstriplines. b) OR Explain encapsulation of devices in hybrid MICs. 10. a) Explain working of step recovery diode frequency multiplier. b) 6 A planar resistor has the following parameters: 11. a) Resistive film thickness $t = 0.1 \mu m$ Resistive film length $\ell = 10 \text{ mm}$ Resistive film width w = 10 mmSheet resistivity of gold film $P_S = 2.44 \times 10^{-8} \Omega / m$ Calculate the planar resistance. 7 Explain thin film formation in MMIC. b) OR Describe hybrid integrated circuit fabrication in detail. 12. a) 5 Explain the following: b) Substrate materials Dielectric materials Conductor materials ii) Resistive materials. iv)
