M.E. Second Semester (Electrical & Elect.) (New-CGS)

13291 : Elective-I : Power Electronics Controlled Drives : 2 EEEME 4

P. Pages: 2 Time: Three Hours

AW - 3844

Max. Marks: 80

7

7

7

7

Notes: 1. Due credit will be given to neatness and adequate dimensions.

- 2. Assume suitable data wherever necessary.
- 3. Use of pen Blue/Black ink/refill only for writing the answer book.

SECTION - A

- 1. a) Draw the schematic diagram of speed controlled two quadrant separately excited DC motor drive and explain it's operation in detail.
 - b) Derive the expression for average load voltage and load current for single phase full converter fed separately excited DC motor. Draw the output voltage and current waveforms for $\alpha = 60^{\circ}$. Assume continuous condition.

OR

- 2. a) Explain with necessary diagram the converter configuration for a four quadrant DC motor drive.
 - b) Explain the operation of three phase fully controlled rectifier for firing angle of 600 in case of R-L load. Also derive the expression for average output voltage for the same firing angle.
- 3. a) A 220V DC source is connected to a separately excited DC motor through a chopper operating at 500 Hz. The load torque at 1500 RPM is 35 Nm. The motor has $L_a = 2mH$, $R_a = 0\Omega$, $R_f = 1\Omega$, $K_m = 1.3V$ sec/rad. Motor and chopper losses are neglected. Calculate.
 - i) Minimum and maximum value of armature current excursion.
 - ii) Obtain expressions for armature current during ON and OFF period of chopper cycle.
 - b) Explain the operation of two quadrant DC chopper fed separately excited DC motor exhibiting forward motoring and forward regeneration modes. Along with speed torque characteristics.

OR

- 4. a) Draw a neat block diagram for a closed loop operation of a chopper fed dc separately existed motor and explain each block elahratively. Mention few advantages.
 - b) A 230V, 960 RPM and 200A separately existed DC motor has an armature resistance of $0.02\,\Omega$. The motor is fed from a chopper which provides both motoring and braking operations. The source has a voltage of 230V. Assuming continuous conduction.
 - i) Calculate duty ratio of chopper for motoring operation at rated torque and 350 RPM.
 - ii) Calculate duty ratio of chopper for breaking operation at rated torque and 350 RPM.
- 5. a) Explain induction motor dynamics during starting and breaking.

7

7

6

	0)	function of power factor angle.	0
6.	a)	Compare Scherbius and Kramer drive System. Show that Scherbius drive can operate in the Subsynchronous and super-synchronous range of operation.	6
	b)	Explain why the drive based on slip energy recovery principle are more efficient than the drive based on the rotor resistance control technique.	7
		SECTION – B	
7.	a)	Draw circuit diagram of variable frequency induction motor drive where no force commutation of SCRs is required. Explain it's working in detail.	7
	b)	For a frequency controlled induction motor explain the terms in details, the constant slip-speed control and constant air gap flux control.	6
		OR	
8.	a)	Explain with block diagram the operation of a DC link voltage source inverter for speed control of three phase induction motor drive.	7
	b)	Explain the operation of the induction motor when direct method of vector control is adopted.	6
9.	a)	Develop and explain flowchart for indirect vector controlled induction motor.	6
	b)	Discuss the advantages of variable frequency induction motor drive.	7
		OR	
10.	a)	Explain key performance characteristics and applications of vector controlled induction motor.	7
	b)	What is vector control? Explain implementation of indirect vector control scheme for three phase induction motor.	6
11.	a)	Explain modelling of PM Brushless dc motor.	7
	b)	What do you rnean by phase advancing? Explain.	7
		OR	
12.	a)	Explain with block schematic the speed controlled PMBDCM drive scheme without flux weakening.	7
	b)	Write a short note on design of current controllers for PMBDCM drive.	7
		水冰凇凇水溶冰水	

AW - 3844