M.E. Second Semester (Civil (Structural Engineering)) (New-CGS) 13093: Theory of Plates and Shells 2 SFES 3

P. Pages: 1 Time: Three Hours

AW - 3891

Max. Marks: 80

	Notes	: 1. 2.	Answer Three question from Section A and Three question from Section B. Assume suitable data wherever necessary.	
		3.	Illustrate your answer necessary with the help of neat sketches.	
		4.	Use of pen Blue/Black ink/refill only for writing the answer book.	
			SECTION – A	
1.	a)	State a	assumptions made in theory of thin plates with small deflection.	4
	b)	Derive	e from first principle moment-curvature relationship for plates in pure bending.	10
2.			Lagrange's equation for small deflection of Laterally loaded rectangular plate. In different boundary conditions.	13
3.			e an expression for maximum deflection of simply supported rectangular plate $q = f(x, y)$ using Navier's solution.	13
4.		Find the finite difference operator for a deflection of plate, bending moment and twisting moment for a simply supported edges.		
5.		Derive	the governing differential equation for anisotropic plate using first principle.	13
			SECTION – B	
6.	a)	State a	assumptions made in membrane theory.	6
		Derive general equilibrium equations in case of membrane theory for a shell with usual notation $N_X, N_\theta, N_{X\theta}$ and R .		
7.		Using stress	membrane theory of circular shells with circular directrix obtain an expression for under	13
			Dead load. 2) Snow load.	
8.	a)	State a	assumptions made in bending theory of cylindrical shells.	6
	b)	State a	assumptions, advantages and range of validity of Beam theory of cylindrical shells.	7
9.		Find the values of N_X and $N_{X\varphi}$ in shell element of cylindrical shell with edge beam for		
		follow	ring details.	
		L = 38		
		$\phi_{\rm C} = 3$		
		d=0.1		
		$\mathbf{B} = 0.$ $\mathbf{D} = 0.$		
10.		Derive	Schorer's differential equation in bending theory of cylindrical shell.	13

AW - 3891

