M.E. First Semester (Mechanical Engg. (Thermal Engg.)) (New-CGS)

13506: Advanced Thermodynamics: 1 MTE 2

P. Pages: 2

Time: Three Hours

AW - 3800

Max. Marks: 80

6

7

7

7

6

Notes: 1.

- Answer three question from Section A and three question from Section B.
- 2. Assume suitable data wherever necessary.
- 3. Diagrams and chemical equations should be given wherever necessary.
- 4. Use of slide rule logarithmic tables, Steam tables, Moller's Chart, Drawing instrument, Thermodynamic table for moist air, Psychrometric Charts and Refrigeration charts is permitted.
- 5. Discuss the reaction, mechanism wherever necessary.

SECTION - A

- 1. a) A gas is flowing through a pipe of the rate of 2 kg per second. Because of inadequate insulation the gas temperature decreases from 800°C to 790°C between two sections in the pipe. Neglecting pressure losses, calculate the irreversibility rate due to this heat loss. Take $T_0 = 300 \text{ K} \text{ and } C_p = 1.1 \text{ kJ/kgK}.$
 - b) Show that it is impossible by any procedure to reduce the temperature of any system to absolute zero by performing any number of finite operations.
- 2. Show that for a system to be stable these conditions are satisfied :a)
- $C_{v} > 0$ (thermal stability) ii) $\left[\frac{\partial P}{\partial V}\right]_{T} < 0$ (mechanical stability)
 - A quantity of gas has a pressure of 800 kN/m² and it occupies a volume of 0.011 m³ at 7 b) 145°C. The gas expands isothermally to 0.09 m³. Determine change in entropy.
- A rigid tank of volume 0.5 m³ is initially evacuated. A tiny hole develops in the wall, and 3. 6 a) air from the surroundings at 1 bar, 21°C leaks in. Eventually the pressure in the tank reaches 1 bar. The process occurs slowly enough that heat transfer between the tank and the surroundings keeps the temperature of the air inside the tank constant at 21°C. Determine the amount of heat transfer.
 - A heat engine receives half of it's heat supply at 1000 K and half at 500 K while rejecting b) heat to a sink at 300 K. What is max^m, thermal efficiency of heat engine?
- 7 Show that the minimum theoretical work input required by the refrigeration cycle to bring 4. a) two finite bodies from the same initial temperature to the final temperature of T₁ and T₂ $(T_2 > T_1)$ is given by :-

$$w_{min} = mc \left[2(T_1T_2)^{1/2} - T_1 - T_2 \right]$$

- A mass of 6.98 kg of air is in a vessel at 200 kPa, 27°C. Heat is transferred to the air from b) reservoir at 727°C until the temperature of air raises to 327°C. The environment is at 100 kPa, 17°C. Determine
 - initial and final availability of air.
 - the maximum useful work associated with the process.

AW - 3800

P.T.O

5. a) Prove that for Vander Waals gas:-

$$C_p - C_v = \frac{R}{1 - \frac{2a(v - b)^2}{R T_v^3}}$$

b) The Joule-Kelvin coefficient (μ_J) is a measure of the temperature change during a throttling process. A similar of the temperature change produced by an isentropic change of pressure is provided by the coefficient (μ_S) , where,

7

6

7

6

$$\mu_{S} = \left[\frac{\partial T}{\partial P}\right]_{S}$$
 prove that, $\mu_{S} - \mu_{J} = \frac{V}{C_{p}}$.

SECTION - B

- 6. a) Show that in a diffusion process a gas undergoes a free expansion from the total pressure to the relevant partial pressure.
 - b) What is Dalton's and Amagat's model for multiphase system? Discuss.
- 7. a) State the derive Gibbs theorem.
 - b) Show that in a diffusion process at constant temperature the entropy increases and the Gibb's function decreases.
- 8. a) How does the percentage of moisture in air affect the outcome of a combustion process?
 - Prove that, $\Delta G = \Delta H + T \left[\frac{\partial \Delta G}{\Delta T} \right]_{P}$
- 9. a) Show that the efficiency of Otto cycle is a function of compression ratio.
 - b) At 35°C and 1 atm. the degree of dissociation of N₂O₄ at equilibrium is 0.27.
 - i) Calculate K.
 - ii) Calculate E at the same temperature when the pressure is 100mm Hg.
 - iii) The equilibrium constant for the dissociation of N₂O₄ has the values 0.664 and 0.414 at temperatures 318 and 298K respectively.
 Calculate the average heat of reaction within this temperature range.
- 10. a) Discuss the guidelines for improving the effectiveness of the Rankine cycle.
 - A reversible heat engine operates on a carnot cycle with the upper temperature limit of 400°C and has a thermal efficiency of 55%. The volume ratio of the expansion of the isothermal process is 2.8. Determine the overall volume expansion ratio.
 Take (C_p/C_v)=1.4.

AW - 3800