# M.E. First Semester (Mechanical Engg. (Thermal Engg.)) (New-CGS) <br> 13506 : Advanced Thermodynamics : 1 MTE 2 

P. Pages : 2

Time : Three Hours

Notes : 1. Answer three question from Section $A$ and three question from Section B.
2. Assume suitable data wherever necessary.
3. Diagrams and chemical equations should be given wherever necessary.
4. Use of slide rule logarithmic tables, Steam tables, Moller's Chart, Drawing instrument, Thermodynamic table for moist air, Psychrometric Charts and Refrigeration charts is permitted.
5. Discuss the reaction, mechanism wherever necessary.

## SECTION - A

1. a) A gas is flowing through a pipe of the rate of 2 kg per second. Because of inadequate insulation the gas temperature decreases from $800^{\circ} \mathrm{C}$ to $790^{\circ} \mathrm{C}$ between two sections in the pipe. Neglecting pressure losses, calculate the irreversibility rate due to this heat loss. Take $\mathrm{T}_{\mathrm{o}}=300 \mathrm{~K}$ and $\mathrm{C}_{\mathrm{p}}=1.1 \mathrm{~kJ} / \mathrm{kgK}$.
b) Show that it is impossible by any procedure to reduce the temperature of any system to absolute zero by performing any number of finite operations.
2. a) Show that for a system to be stable these conditions are satisfied :-
i) $\mathrm{C}_{\mathrm{v}}>0$ (thermal stability)
ii) $\left[\frac{\partial \mathrm{P}}{\partial \mathrm{V}}\right]_{\mathrm{T}}<0$ (mechanical stability)
b) A quantity of gas has a pressure of $800 \mathrm{kN} / \mathrm{m}^{2}$ and it occupies a volume of $0.011 \mathrm{~m}^{3}$ at $145^{\circ} \mathrm{C}$. The gas expands isothermally to $0.09 \mathrm{~m}^{3}$. Determine change in entropy.
3. a) A rigid tank of volume $0.5 \mathrm{~m}^{3}$ is initially evacuated. A tiny hole develops in the wall, and air from the surroundings at $1 \mathrm{bar}, 21^{\circ} \mathrm{C}$ leaks in. Eventually the pressure in the tank reaches 1 bar. The process occurs slowly enough that heat transfer between the tank and the surroundings keeps the temperature of the air inside the tank constant at $21^{\circ} \mathrm{C}$. Determine the amount of heat transfer.
b) A heat engine receives half of it's heat supply at 1000 K and half at 500 K while rejecting heat to a sink at 300 K . What is $\mathrm{max}^{\mathrm{m}}$. thermal efficiency of heat engine?
4. a) Show that the minimum theoretical work input required by the refrigeration cycle to bring two finite bodies from the same initial temperature to the final temperature of $T_{1}$ and $T_{2}$ $\left(T_{2}>T_{1}\right)$ is given by :-

$$
\mathrm{w}_{\min }=\mathrm{mc}\left[2\left(\mathrm{~T}_{1} \mathrm{~T}_{2}\right)^{1 / 2}-\mathrm{T}_{1}-\mathrm{T}_{2}\right]
$$

b) A mass of 6.98 kg of air is in a vessel at $200 \mathrm{kPa}, 27^{\circ} \mathrm{C}$. Heat is transferred to the air from reservoir at $727^{\circ} \mathrm{C}$ until the temperature of air raises to $327^{\circ} \mathrm{C}$. The environment is at 100 $\mathrm{kPa}, 17^{\circ} \mathrm{C}$. Determine
i) initial and final availability of air.
ii) the maximum useful work associated with the process.
5. a) Prove that for Vander Waais gas:-

$$
C_{p}-C_{v}=\frac{R}{1 \frac{2 a(v-b)^{2}}{R} T_{v}}
$$

b) The Joule-Kelvin coeflicient ( $\mu_{j}$ ) is it measure of the temperature change during a throttling process. A similar of the temperature change produced by an isentropic change of pressure is provided by the coefficient $\left(\mu_{\mathrm{S}}\right)$. where,
$\mu_{\mathrm{S}}=\left[\frac{\partial \mathrm{T}}{\partial \mathrm{P}}\right]_{\mathrm{S}}$ prove that, $\mu_{\mathrm{S}}-\mu_{\mathrm{J}}=\frac{\mathrm{V}}{\mathrm{C}_{\mathrm{P}}}$.
SECTION-B
6. a) Show that in a diffusion process a gas undergoes a free expansion from the total pressure to the relevant partial pressure
b) What is Dalton's and Amagat's model for multiphase system? Discuss.
7. a) State the derive Gibbs theorem.
b) Show that in a diffusion process at constant temperature the entropy increases and the Gibb's function decreases.
8. a) How does the percentage of moisture in air affect the outcome of a combustion process?
b) Prove that, $\Delta G=\Delta H+\left[\frac{\partial \Delta G}{\Delta T}\right]_{P}$
9. a) Show that the efficiency of Otto cyele is a function of compression ratio.
b) At $35^{\circ} \mathrm{C}$ and 1 atm , the degree of dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ at equilibrium is 0.27 .
i) Calculate $K$.
ii) Calculate $E$ at the same temperature when the pressure is 100 mm Hg .
iii) The equilibrium constant for the dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ has the values 0.664 and 0.414 at temperatures 318 and 298 K respectively.
Calculate the average heat of reaction within this temperature range.
10. a) Discus:s the guidelines for improving the eflectiveness of the Rankine cycle.
b) $\Lambda$ reversible heat engine operates on a carnot cycle with the upper temperature limit of $400^{\circ} \mathrm{C}$ and has a thermal efficiency of $55 \%$. The volume ratio of the expansion of the isothermal process is 2.8 . Determine the overall volume expansion ratio.
Take $\left(C_{p} / C_{v}\right)=1.4$.

