M.E. First Semester (Mechanical Engg. (Thermal Engg.)) (New-CGS)

13505 : Advanced Mathematics - III 1 MTE 1

P. Pages: 2

Time: Three Hours

AW - 3799

Max. Marks: 80

Notes: 1. All question carry equal marks.

- 2. Answer two question from Section A and two question from Section B.
- 3. Assume suitable data wherever necessary.
- 4. Use of slide rule logarithmic tables, calculators, normal table is permitted.
- 5. Figures to right indicate full marks.
- 6. Use of pen Blue/Black ink/refill only for writing the answer book.

SECTION - A

Solve
$$\frac{\partial^3 z}{\partial x^3} - 2 \frac{\partial^3 z}{\partial x^2 \partial y} = 2e^{2x} + 3x^2y$$

b) Solve
$$r + 2s + t = 2(y - x) + \sin(x - y)$$
 6

c) Solve
$$(D^2 - 6DD' + 9D'^2)z = 12x^2 + 36xy$$

Solve the equation
$$\frac{\partial^2 z}{\partial x^2} - 2\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$$
 by the method of separation of variables.

Solve the equation
$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x} \, \partial \mathbf{t}} = \mathbf{e}^{-\mathbf{t}} \cos \mathbf{x}$$
 given that $\mathbf{u} = 0$ when $\mathbf{t} = 0$ and $\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = 0$ when $\mathbf{x} = 0$.

Solve
$$\frac{\partial^2 z}{\partial x^2} + 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = x^2 + xy + y^2$$

3. a) Obtain the solution of the equation
$$\frac{\partial^2 z}{\partial x \partial y} = \sin x \sin y$$
 for which $\frac{\partial z}{\partial y} = -2 \sin y$ when $x = 0$ and $z = 0$ when y is an odd multiple of $\pi/2$.

Solve
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
 which satisfies the conditions $u(0, y) = u(\ell, y) = u(x, 0) = 0$ and $u(x, a) = \sin \frac{n \pi x}{\ell}$

SECTION - B

6

10

10

4. a) By the method of least squares find the straight line that best fits the given data.

ĺ		1	7	2	4	5	
	X		4.	Ş	7	2	
	y	14	27	40	55	68	

- b) In a partially destroyed laboratory record of an analysis of a correlation data, the following results only are available: variance of x = 9
 Regression equations 8x-10y+66 = 0, 44x-18y = 214
 what were (a) the mean values of x and y (b) standard deviation of y and (c) the coefficient of correlation between x and y.
- c) The probability that a managed 60 will live to be 70 is 0.65. What is the probability that out of ten men now 60, at least 7 would live to be 70?
- 5. a) Use Newton's divided difference formula to find f(x) from the following data.

X	0	1	2	4	5	6
f(x)	1	14	15	5	6	19

b) Apply Lagrange's formula to find f(x) from the data.

X	0	1	4	5
f(x)	4	3	24	39

- 6. a) Use the Runge Kutta fourth order method to find y(0.2) with h = 0.1 for the initial value problem $\frac{dy}{dx} = \sqrt{x+y}$, y(0) = 1.
 - b) Apply Milne's method, to find a solution of the differential equation $\frac{dy}{dx} = x y^2$ in the range $0 \le x \le 1$ for the boundary condition y = 0 at x = 0.

AW - 3799