M.E. First Semester (Electrical (E.P.S.)) (Full Time) (Old)

13299: Power System Optimization: 1 SEPS 1

P. Pages: 2 Time: Three Hours

AW - 3656

6

8

10

Max. Marks: 80

Notes:

- 1. Answer two question from Section A and two question from Section B.
- 2. Due credit will be given to neatness and adequate dimensions.
- 3. Assume suitable data wherever necessary.
- 4. Diagrams and chemical equations should be given wherever necessary.
- 5. Retain the construction lines.
- 6. Illustrate your answer necessary with the help of neat sketches.
- 7. Use of pen Blue/Black ink/refill only for writing the answer book.

SECTION - A

- 1. a) What is operation research? and also mention engineering application of optimization.
 - b) Determine the maximum and minimum values of the function. $f(x) = 12x^5 45x^4 + 40x^3 + 5.$
 - Find the dimension of a cylindrical tin (with top and bottom) made up of sheet metal to maximize its volume such that the total surface area is equal to $A_0 = 24\pi$. Consider x_1 and x_2 denote the radius of the base and length of the tin respectively.
- 2. a) Minimize $f = 2x_1 + 3x_2 + 2x_3 x_4 + x_5$ subject to the constraints $3x_1 3x_2 + 4x_3 + 2x_4 x_5 = 0$ $x_1 + x_2 + x_3 + 3x_4 + x_5 = 2$ $x_i \ge 0$ i = 1 to 5
 Solve by Two phase simplex method.
 - b) Enumerate the limitations of Fibonacci method and show that the method obtains a reduction ratio: $\frac{L_n}{L_o} = \frac{1}{F_n}.$
- 3. a) Explain briefly the Modified Distribution (MODI) method or the u-v method for checking 10 the solution of optimality in transportation problems.
 - b) Describe a general transportation problem explain how to determine an initial basic feasible 10 solutions to the problem using Vogel's Method.

SECTION - B

4.	a)	Solve the following LP problem by dynamic programming $f(x_1, x_2) = 50x_1 + 100x_2$	10
		subject to $10x_1 + 5x_2 \le 2500$	
		$4x_1 + 10x_2 \le 2000$ $x_1 + 1.5x_2 \le 450$	
		and $x_1 \ge 0$; $x_2 \ge 0$	
	b)	What are the basic operations used in Genetic algorithm? What is fitness function in Genetic algorithm.	10
5.	a)	Derive the recursive relationship [Function Equation] for n stage multi decision process.	6
	b)	Explain any two applications of dynamic programming.	5
	c)	Explain how genetic algorithm can be applied for reactive power optimization in Electrical Power System.	9
6.	a)	Explain briefly 'CPM' and 'PERT'.	8
	b)	Explain how conversion of final value problem into an initial value problem is done.	6
	c)	Explain the terms related to PERT. i) Optimistic time iii) Most likely time iv) Pessimistic time iv) Expected time	6

AW - 3656