M.E. First Semester (Electronics & Tele.) (Full Time (C.G.S.- New)

13334 : Digital Signal Processing and Applications : 1 ENTC 4

P. Pages : 2 Time :			AW - 3900 Max. Marks : 80	
	Not	es: 1. Answer three question from Section A and three question from Section B. 2. Due credit will be given to neatness and adequate dimensions. 3. Assume suitable data wherever necessary. 4. Use of pen Blue/Black ink/refill only for writing the answer book.		
		SECTION - A		
1.	a)	What are the possible types of impulse for linear phase FIR filter? What are the conditions to be satisfied for constant phase delay in linear phase FIR filters.	7	
	b)	State the advantage and disadvantage of digital filter. Compare it with analog filter.	6	
		OR		
2.	a)	Derive the expression to determine the poles of butterworth filter.	7	
	b)	Describe Inverse Chebyshev Filter.	6	
3.	a)	Explain the procedure for designing FIR filter using windows.	7	
	b)	Discuss equiripple linear phase FIR filter.	6	
		OR		
4.		Design an ideal low pass filter whose desired frequency response $Hd(e^{j\omega})=1$, $\frac{\pi}{3} \ge \omega \ge -\frac{\pi}{3}$	13	
		$=0, \qquad \pi \geq \omega \geq \frac{\pi}{3}$		
		 i) Determine the impulse response for N = 9. ii) Determine H(Z). 		
5.		Explain the design of IIR filter using Impulse Invariant Technique. What is pole mapping? Give the steps to design digital filter using Impulse Invariant method.	13	
		OR		
6.	a)	Determine H(Z) for a Butterworth filter satisfying the following specification $0.8 \le \left H(e^{j\omega}) \right \le 1; 0 \le \omega \le \frac{\pi}{4}$ $\left H(e^{j\omega}) \right \le 0.2; \frac{\pi}{2} \le \omega \le \pi$ Assume T = 0.1 sec.	8	
		Apply Bilinear transformation method.		
	b)	What is bilinear transformation. Give its properties, advantage and disadvantage.	5	

SECTION - B

7. a) Explain in detail all the identities of multirate DSP? 7 b) Explain with block diagram the general polyphase framework for decimator and 7 interpolator. OR 8. a) The T.F. of an HR filter is 7 $H(Z) = \frac{1 + 0.32 Z^{-1} + 0.58 Z^{-2}}{1 + 0.7 Z^{-1} + 0.4 Z^{-2}}$ perform polyphase decomposition of H(Z) to decompose into 2 – section 4 – section ii) What are the error in QMF filter bank? Explain how alias free QMF realization is b) 7 achieved. 9. a) Explain different addressing modes of DSP Processor TMS 320 C 6713. 7 b) Differentiate between Van - Neumann and Harvard Architecture. 7 OR 10. Explain the pipeline operations in DSP Processor TMS 320 C 6713. a) 7 b) Write any 4 special instructions of TMS 320 C 67XX processor that are suitable for signal 7 processing application and explain them. 11. Discuss briefly the various applications of wavelet transform. a) 6 7 b) Prove "If f(t) has continuous wavelet transform given by $CWT_f(a,b)$ then f'(t) = f(t-b')leads to the following transform $CWT_{f'}(a,b) = CWT_{f}(a,b-b')^{-n}$ OR 12. Explain the various steps to compute continuous wavelet transform of a given signal. 7 a) b) Prove the orthogonality relation of Daubechies wavelet. 6 ******

AW - 3900