M.F. First Semester (Electronics & Tele.) (Full Time) (C.G.S.- New)

13333 : Digital Communication Techniques : 1 ENTC 3

P. Pages: 2 Time: Three Hours

AW - 3899

Max. Marks: 80

Due credit will be given to neatness and adequate dimensions. Notes: 1.

- 2. Assume suitable data wherever necessary.
- 3. Illustrate your answer necessary with the help of neat sketches.
- 4. All questions carry marks as indicated.
- Use of pen Blue/Black ink/refill only for writing the answer book. 5.

SECTION - A

1. a) For the matched filter receiver, prove that O/P SNR is given by $SNR_0 = \frac{2 \in}{N_0}$.

7

6

7

6

7

b) Discuss the power spectra of CPFSK and CPM in detail.

OR

- 2. Explain in brief signal space and vector space concept. a)
 - Derive the expression for probability of error for m ary PSK. 8 b)
- 7 3. Explain rate distortion function, scalar and vector quantization. a)
 - Explain in detail Lempel Ziv algorithm with suitable example. 6 b)

OR

Show that the entropy of an n – dimensional Gaussian vector $X = (x_1, x_2,, x_n)$ with zero 4. 6 a) mean and covariance matrix C is

 $H(X) = \frac{1}{2} \log (2\pi e)^{n} |c|$

- Explain block schematic of delta modulation scheme. b)
- 5. Explain in detail trellis coded modulation. a)

7 A convolutional code is described by

b)

 $g_1 = [101], g_2 = [111], g_3 = [111]$

- Draw the encoder corresponding to this code.
- Draw the state transition diagram for this code.
- iii) Draw the trellis-diagram for this code.
- Find the T.F. and free of the code.
- v) Verify whether or not this code is catastrophic.

OR

AW - 3899 1 P.T.O

6.	a)	Explain in detail BCH Code.	(
	b)	Explain the temporal wave form coding for PCM and DPCM with block diagram.	7
		SECTION – B	
7.	a)	Explain the data detection for controlled ISI.	7
	b)	Discuss the probability of error detection for PAM with zero ISI.	7
		OR	
8.	a)	Explain the Nyquist pulse shaping criteria for zero and controlled ISI.	8
	b)	Explain the effect of ISI on eye – opening.	6
9.	a)	Explain in detail adaptive linear equalizer.	6
	b)	Explain in detail the DFE and its performance characteristics.	7
		OR	
10.	a)	Explain in detail the LMS algorithm.	7
	b)	Explain in detail peak distortion criterion.	6
11.	a)	Explain the effect of pulsed – Interference on DS spread spectrum system.	6
	b)	Explain synchronization of spread spectrum system.	7
		OR	
12.	a)	Explain in detail the different applications of DS spread spectrum system.	7
	b)	Explain time hopping spread spectrum system.	6

AW - 3899 2