M.E. First Semester (Electrical & Elect.) (New-CGS)

13283: Advanced Digital Signal Processing: 1 EEEME 3

P. Pages: 2

Time: Three Hours

AX - 3567

Max. Marks: 80

Due credit will be given to neatness and adequate dimensions. Notes: 1.

- Assume suitable data wherever necessary. 2.
- Diagrams and chemical equations should be given wherever necessary. 3.
- Retain the construction lines. 4
- Illustrate your answer necessary with the help of neat sketches. 5.
- Use of pen Blue/Black ink/refill only for writing the answer book. 6.
- Determine the response of the following systems to the input signal. 1. a)

$$\mathbf{x}(\mathbf{n}) = \begin{cases} |\mathbf{n}|, & -3 \le \mathbf{n} \le 3 \\ 0, & \text{otherwise} \end{cases}$$

- y(n) = x(n) (Identity System) a)
- y(n) = x(n-1) (Unit Delay System)
- y(n) = x(n+1) (Unit Advance System)
- $y(n) = \frac{1}{2} [x(n+1) + x(n) + x(n-1)]$ (Moving Average Filter) d)
- $y(n) = median\{x(n+1), x(n), x(n-1)\}$ (Median Filter) e)

f)
$$y(n) = \sum_{k=-\infty}^{n} x(k) = x(n) + x(n-1) + x(n-2) --- (Accumulator)$$

The impulse response of a linear time invariant system is, b)

$$h(n) = \{1, 2, 1, -1\}$$

Determine the response of the system to the input signal.

$$x(n) = \{1, 2, 3, 1\}$$

Perform the circular convolution of the following two sequences, 2. a)

$$x_1(n) = \{2,1,2,1\}$$

 $x_2(n) = \{1,2,3,4\}$

Determine the eight - point DFT of the signal b)

$$\mathbf{x}(\mathbf{n}) = \{1, 1, 1, 1, 1, 1, 0, 0\}$$

and sketch its magnitude & phase.

- Determine the impulse response of an FIR lattice filter with parameter 3. a) $k_1 = 0.6, k_2 = 0.3, k_3 = 0.5 & k_4 = 0.9$
 - Differentiate between analog filter & Digital filter. b)

Obtain the direct form I, direct form II, cascade & 11el structures for the following system, a) 4.

$$y(n) = y(n-1) - \frac{1}{2}y(n-2) + x(n) - x(n-1) + x(n-2)$$

7

7

6

7

Determine a parallel & a cascade realization of the system,

$$H(z) = \frac{1 + z^{-1}}{(1 - z^{-1})(1 - 0.8e^{j\pi/4}z^{-1})(1 - 0.8e^{-j\pi/4}z^{-1})}$$

- 5. Given the specification $\alpha_p = 3dB$, $\alpha_s = 16dB$, $f_p = 1KHz & f_s = 2KHz$. Determine the order a) of the filter using Chebyshev approximation. Find H(s).
 - Determine the order & poles of low pass Butterworth filter that has a 3dB attenuation at 500 b) Hz & an attenuation of 40 dB at 1000 Hz.

6

7

7

7

7

7

- 6. Given the specification α_p =1dB, α_s = 30dB, Ω_p = 200 r/sec, Ω_s = 600 rad/sec . a) Determine the order of the filter.
 - b) Prove that

$$\Omega_{c} = \frac{\Omega_{p}}{\left(10^{0.1\alpha_{p}} - 1\right)^{1/2N}} = \frac{\Omega_{s}}{\left(10^{0.1\alpha_{s}} - 1\right)^{1/2N}}$$

- 7. If the sample sequence of a random process has N = 1000 samples, a) Determine the freq. resolution of the Bartlett, Welch (50% overlap), & Blackman -
 - Tukey methods for a quality factor Q = 10.
 - Determine the record length for the Bartlett, Welch (50%, overlap), & Blackman -Tukey methods.
 - The Bartlett method is used to estimate the power spectrum of a signal x(n) consisting of b) 2400 samples.
 - Determine the smallest record length of each segment that yields a frequency resolution of $\Delta_f = 0.07$.
 - Determine the quality factor QB.
- Explain Tukey & Blackman method for periodograms. 8. a)
 - 7 Explain why AR model is widely used in random signal processing. b) 7
- 9. Explain in detail quadrature mirror filter bank. a)
 - 7 What is aliasing? What is the need for anti - aliasing filter prior to down sampling? b)
- What is a multirate system? What are its applications. 10. a)
 - 6 b) Explain the polyphase decomposition process.
- 7 11. Explain special purpose DSP processor in detail. a) 13
- 12. Explain in detail how special purpose DSP can be used for FFT implementation. 6
 - Explain in detail any one architecture of TMS320C54XX/TMS320C67XX series DSP b) 7
