M.E. First Semester (Electrical Engg. (Electrical Power System))

13568 : Advanced Control System : EP 2101

P. Pages: 3
Time: Three Hours

AW - 3860

Max. Marks: 80

7

6

7

6

7

6

7

Notes: 1. Due credit will be given to neatness and adequate dimensions.

- 2. Assume suitable data wherever necessary.
- 3. Illustrate your answer necessary with the help of neat sketches.
- 4. Use of pen Blue/Black ink/refill only for writing the answer book.
- 1. a) Explain the configuration of the basic digital control scheme. Also explain the operation of A/D converter and D/A concerted in details.
 - b) Find the Z-transform of following functions useful for control system.
 - i) Sample exponential signal.
 - ii) Sample sinusoidal sequence.

OR

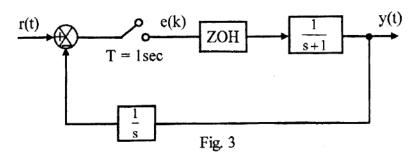
2. a) For a discrete time system

$$y(k+2)+\frac{1}{4}y(k+1)-\frac{1}{8}y(k)=3r(k+1)-r(k)$$

with input $r(k) = (-1)^k u(k)$ and

initial conditions y(-1) = 5; y(-2) = -6

Find the output y(k); $x \ge 0$.


- b) The characteristics polynomial
 - $F(z) = 4z^4 + 6z^3 + 12z^2 + 5z + 1.$

find stability using Jury's stability test.

- 3. a) Explain in details the digital temperature control system?
 - b) Explain in details digital position control system.

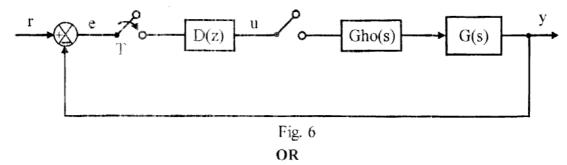
OR

4. a) For a sample data control system shown in fig (3) find the output y(k) for r(t) = unit step.

- A unity feedback system has OLTF $G(s) = \frac{5}{s(s+1)(s+2)}$ using the Routh stability criteria. Show that closed loop system is stable.
- 6
- Feedback control system shown in fig (5). The plant is described by $G(s) = \frac{k}{s(s+2)}$ 5.

14

7


7

14

Design a digital control scheme for the system to meet the specifications.

 $k_u = 6$

- ii) M_p to step input $\leq 15\%$
- iii) t_s for 2% tolerance band ≤ 5 sec

- For a unity feedback discrete time system determine steady state error & error constant for 6. various input signal such as
 - Unit step **i**)

ii) Ramp input

- iii) Parabolic input
- Explain the types of compensators as referred to frequency response & also mention need b) 7 for compensation.
- 7. Determine the controllability and observability properties of the following systems. a)

From the controllability and observability properties
$$A = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix}; b = \begin{bmatrix} 1 \\ 0 \end{bmatrix}; c = \begin{bmatrix} 1 & -1 \end{bmatrix}.$$

$$A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 \\ 1 & 2 \\ 2 & 1 \end{bmatrix}; C = \begin{bmatrix} 1 & 1 & 2 \\ 3 & 1 & 5 \end{bmatrix}.$$

- b) Find the eigenvalue & eigenvectors for the following matrices.
 - i) $\begin{vmatrix} -3 & 2 \\ -1 & 0 \end{vmatrix}$.

ii) $\begin{bmatrix} 0 & 1 & 0 \\ 3 & 0 & 2 \\ -12 & -7 & -6 \end{bmatrix}$.

OR

- Construct the state model for the following differential equations obtain a different 8. canonical form for each system.
 - $\ddot{\mathbf{y}} + 6\ddot{\mathbf{y}} + 11\dot{\mathbf{y}} + 6\mathbf{y} = \mathbf{u}.$
 - $\ddot{y} + 6\ddot{y} + 11\dot{y} + 6y = \ddot{u} + 8\ddot{u} + 17\dot{u} + 8u$.

i)
$$X(k+1) = \begin{bmatrix} 1 & -2 \\ 1 & -1 \end{bmatrix} X(k) + \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} u(k)$$
$$y(k) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} x(k)$$

ii)
$$X(k+1) = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix} X(k) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k)$$

 $y(k) = \begin{bmatrix} 1 & 1 \end{bmatrix} x(k)$

b) Consider the matrix
$$F = \begin{bmatrix} 0 & 1 \\ -0.16 & -1 \end{bmatrix}$$
 compute the $F^k = \phi(k)$ using inverse Z-transform.

6

6

OR

10. a) A discrete time system has state equation
$$X(k+1) = \begin{bmatrix} 0 & 1 \\ -10 & -7 \end{bmatrix} x(k).$$

use Cayley Hamilton approach to find its state transition matrix.

11.
$$X(k+1) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -0.5 & -0.2 & 1.1 \end{bmatrix} X(k) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(k).$$
 13

Determine state feedback gain matrix 'k' such that u(k) = -k x(k); X(0) is the initial state. Give state variable model of closed loop system.

OR

12. Consider a system
$$\dot{x} = Ax + Bu$$

 $y = cx + du$

$$A = \begin{bmatrix} -2 & -1 \\ 1 & 0 \end{bmatrix} \cdot C = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} -2 & -1 \\ 1 & 0 \end{bmatrix}; \mathbf{B} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}; \mathbf{C} = \begin{bmatrix} 0 & 1 \end{bmatrix}$$
$$\mathbf{d} = \begin{bmatrix} 2 & 0 \end{bmatrix}.$$

Design a full order state observer so that the estimation error will decay in less than 4 second.
