M.E. First Semester (Digital Electronics) (Part Time / Full Time) (C.G.S.- New)

13206: Digital Communication Techniques: 1 UMEF 4

P. Pages: 2

Time: Three Hours

* 0 3 6 6 *

AW - 3760

Max. Marks: 80

Notes: 1. All question

- 1. All question carry equal marks.
- 2. Answer three question from Section A and three question from Section B.
- 3. Due credit will be given to neatness and adequate dimensions.
- 4. Assume suitable data wherever necessary.
- 5. Use of pen Blue/Black ink/refill only for writing the answer book.

SECTION - A

1. a) Derive expression for power density spectrum of CPFSK.

6

7

b) Explain memory-less modulation with signal space diagram. Explain digital PAM system.

OR

- 2. a) Derive an expression for output SNR of matched filter in frequency domain.
- 7

b) How M-ary optimum receiver can be designed using correlators.

- 6
- 3. a) Find the code word for binary sequence 10101110001010010100110011 using Lempel-Ziv Algorithm.
- 7

6

7

b) What are the different analog source coding techniques that are designed to represent the time domain characteristics of the signal? Explain any two technique in detail.

OR

- 4. a) Consider a discrete memoryless source with seven possible symbols.
 x₁, x₂, x₃.....x₇ having the probability 0.004, 0.005, 0.04, 0.10, 0.25. 0.30, 0.25 resp.
 Obtained the Huffman code for each of the symbol, calculate average length entropy & efficiency of source.
 - b) Explain with example vector quantization in detail.
- 5. a) A convolution encoder of rate $\frac{1}{2}$ k = 3 shown in fig.

8

Assume that the encoder is in the all zero state initially.

Draw: i) Tree diagram

- ii) Trellis diagram
- iii) State diagram

	b)	Explain Reed Muller codes.	6
		OR	
6.	a)	Explain stack sequential decoding algorithm with an example for decoding a rate 1/3 convolutional code.	7
	b)	Determine the generator polynomial and rate of double error correcting Reed Solomon code with a block length $n=7$.	7
		SECTION - B	
7.	a)	State and prove Nyquist criterion for zero ISI.	6
	b)	What are the methods for detecting the information symbols at the receiver for the controlled ISI signals? Explain any one.	7
		OR	
8.	a)	Explain what is partial response signalling.	6
	b)	What is Eye pattern? Draw eye pattern for an 8 PSK signal in the absence of ISI and noise explain in detail.	7
9.	a)	Explain working of linear transversal filter.	7
	b)	What do you mean by a decision directed mode of adaptation. Explain zero forcing equalizer.	7
		OR	
10.	a)	With regards to the probability of error discuss the linear MSE Equalizer.	7
	b)	Define peak distortion criterion. Explain the minimization of peak distortion assuming that the equalizer have finite number of taps.	7
11.	a)	Explain and draw the block diagram of QPSK modulator for a D S spread spectrum system.	6
	b)	What are the applications of D S spread spectrum signal. Explain any one in detail.	7
		OR	
12.	a)	With neat block diagram explain Delay - locked loop (DLL) for PN code tracking.	6
	b)	Explain with block diagram time hopping spread spectrum system?	7

AW - 3760