Notes: 1. Assume suitable data wherever necessary.
2. Illustrate your answer necessary with the help of neat sketches.

SECTION - A

1. a) What is an elementary operation? Describe with the help of Fibonacci sequence.
b) Explain.
i) Maximum Rule.
ii) Duality Rule.
iii) Threshold Rule.

OR

2. a) What are the various mathematical notations? Explain each in detail.
b) What are the points on which we have to concentrate at the time of selecting the best algorithm?
3. a) Explain the concept of Tower of Hanoi in detail.
b) Describe trees. Explain search tree algorithm in detail.

OR

4. a) Solve the following inhomogeneous recurrence.

$$
\mathrm{t}_{\mathrm{n}}-3 \mathrm{t}_{\mathrm{n}-1}=(\mathrm{n}+5) 3^{\mathrm{n}} \quad \mathrm{n} \geq 1
$$

b) What is associative table? Explain hashing with example.
5. a) Explain knapsack algorithm. Find the optimal solution for the instance
$\mathrm{n}=5, \mathrm{~m}=100, \mathrm{w}=(11,22,33,44,55)$
and $v=(20,33,66,44,50)$
b) Explain exponentiation as an example of divide and conquer.

OR

6. Explain Kruskal's and Prim's algorithm. Simulate them on the following graph.

SECTION - B

7. a) Explain chain matrix multiplication algorithm for dynamic programming.
b) Explain Floyd's algorithm for computing all pairs shortest path. Find the matrix D where:
$\mathrm{D}_{0}=\mathrm{L}=\left[\begin{array}{cccc}0 & 5 & \infty & \infty \\ 50 & 0 & 15 & 5 \\ 30 & \infty & 0 & 15 \\ 15 & \infty & 5 & 0\end{array}\right]$
$L(\mathrm{i}, \mathrm{j})=\infty$ if the edge (i, j) doesn't exist.

OR

8. a) Explain depth first search for undirected graph with suitable example.
b) Use branch and bound to solve the assignment problem with the following cost matrix.

Task	1	2	3	4	5
Agent					
a	11	17	8	16	20
b	9	7	12	6	15
c	13	16	15	12	16
d	21	24	17	28	26
e	14	10	12	11	15

9. a) Describe parallel algorithm to find the connected component of the graph with suitable example.
b) What is Monte Carlo algorithm? Explain the concept of amplification of stochastic advantage.

OR

10. a) Explain Probabilistic selection and sorting in detail.
b) Explain parallel evaluation of expression with example.
11. a) Give an efficient algorithm to determine whether a graph can be pointed with just two colors, and if so, how to do it?
b) Write short note on linear regression.

OR

12. a) Can we use information theoretic technique for testing graph connectivity? If yes then explain. If no, suggest another technique and explain.
b) Prove that $H A M \equiv T^{P}$ HAMD.
