M.E. First Semester (Computer Science & Information Technology) (New-CGS)

13184: Elective-I: Algorithmics: 1 RNME 5

P. Pages: 2

Time: Three Hours

AW - 3604

Max. Marks: 80

Assume suitable data wherever necessary. Notes: 1.

Illustrate your answer necessary with the help of neat sketches. 2.

SECTION - A

What is an elementary operation? Describe with the help of Fibonacci sequence. 1. a)

6

8

b) Explain.

Maximum Rule. i) Duality Rule. ii)

Threshold Rule. iii)

What are the various mathematical notations? Explain each in detail. 2. a)

7 7

What are the points on which we have to concentrate at the time of selecting the best b) algorithm?

Explain the concept of Tower of Hanoi in detail. 3. a)

7

Describe trees. Explain search tree algorithm in detail. b)

6

OR

Solve the following inhomogeneous recurrence. 4. a)

8

 $t_n - 3t_{n-1} = (n+5)3^n \quad n \ge 1$

5

Explain knapsack algorithm. Find the optimal solution for the instance 5., a)

What is associative table? Explain hashing with example.

7

n = 5, m = 100, w = (11, 22, 33, 44, 55)and v = (20, 33, 66, 44, 50)

Explain exponentiation as an example of divide and conquer. b)

OR

Explain Kruskal's and Prim's algorithm. Simulate them on the following graph. 6.

13

b)

SECTION - B

7. a) Explain chain matrix multiplication algorithm for dynamic programming.

- 7
- b) Explain Floyd's algorithm for computing all pairs shortest path. Find the matrix D where:

7

	0	5	∞	œ
$D_0 = L =$	50	0	15	5
	30	∞	0	15
	15	00	5	0

 $L(i, j) = \infty$ if the edge (i, j) doesn't exist.

OR

8. a) Explain depth first search for undirected graph with suitable example.

· 7

b) Use branch and bound to solve the assignment problem with the following cost matrix.

7

Task	1	2	3	4	5	
Agent						
a	11	17	8	16	20	
b	9	.7	12	6	15	
с .	13	16	15	12	16	
d	21	24	17	28	26	
e	14	10	12	11	15	

- e 6
- a) Describe parallel algorithm to find the connected component of the graph with suitable example.

7

b) What is Monte Carlo algorithm? Explain the concept of amplification of stochastic advantage.

OR

10. a) Explain Probabilistic selection and sorting in detail.

6

b) Explain parallel evaluation of expression with example.

7

11. a) Give an efficient algorithm to determine whether a graph can be pointed with just two colors, and if so, how to do it?

b) Write short note on linear regression.

6

OR

12. a) Can we use information theoretic technique for testing graph connectivity? If yes then explain. If no, suggest another technique and explain.

6

b) Prove that $HAM \equiv T^P HAMD$.

7
