M.E. First Semester (Computer Science & Infor. Tech.) (New-CGS)

13184 : Elective - I : Algorithmics : 1 RNME 5

P. Pages : 2 Time : Three Hours			* 0 4 0 8 *	AW - 3875 Max. Marks : 80
	Note		 All question carry marks as indicated. Assume suitable data wherever necessary. Use of pen Blue/Black ink/refill only for writing the answer book. 	8
1.	a)	Exp	1:	
		i)	Propositional Calculus	
		ii)	Set theory	
		iii)	Quantifiers	
	b)	Wh	at is Asymptotic notation? Explain big 0, theta notations in detail.	6
			OR	
2.	a)	Exp	lain efficiency of algorithm and why do look for efficiency.	7
	b)	Explain:		
		i)	Maximum Rule.	
		ii)	Duality Rule.	
		iii)	Threshold Rule.	
3.	a)	Exp	olain :	6
		i)	Queue	
		ii)	Records and pointers	
	b)	Pro	ve that heap sort algorithm takes a time in 0 (n log n) to sort 'n' elements.	7
			OR	
4.	a)	Exp	plain the analysis of algorithm using the barometer instruction.	7
	b)	Sol	ve the following recurrence by Intelligent Guesswork:	6
			$T(n) = \begin{cases} 0 & \text{if } n = 0\\ 3T(n+2) + n & \text{otherwise} \end{cases}$	
5.	a)	Wh	at is divide and conquer? Explain with example.	7

1

P.T.O

AW - 3875

b) Explain Knapsack algorithm with example? N = 3, m = 20 $(V_1, V_2, V_3) = (25, 24, 15)$ $(W_1, W_2, W_3) = (18, 15, 10)$ OR 7 6. a) Explain Exponentiation as an example of divide and conquer. b) Prove that quick sort takes a time 0 (n log n) to sort n elements on the average. 6 7. a) Explain Recursion with suitable example. 7 Explain the chain matrix multiplication algorithm for dynamic progamming. 7 b) OR 8. Use Branch and Bound technique to solve the assignment problem with the following cost 14 matrix. task 3 4 Agent 11 12 18 40 b 14 15 13 22 c 11 17 19 23 17 20 28 14 9. a) Explain parallel merging networks in brief. 6 b) Prove that "A Sorting Network with 'n' inputs correctly sort any set of valves on its inputs 7 if and only if it correctly sort all the 2n inputs vector consisting only zero and one". OR 7 10. a) Explain Monte Carlo algorithm in detail. b) Describe parallel algorithm to find the connected component of the graph with suitable 6 example. 7 11. a) What is Heuristic algorithm. Explain with example. b) 6 Prove that $MQ \leq IT$, assuming IT is smooth. OR 12. a) Prove that any binary tree with K leaves has an average height of at least Lg K. 7 6 b) Explain in brief NP – hard problems.

6
