M. Tech. First Semester (Chemical Engineering) (CBS) - 13003: Process Control: 1 CE 3

Р.	Pa	age	S	:	2	
Ti	m	n +	Т	'n	TOO	Цα

AW - 3445

Time	: Th	ree :	Hour	Max. Marks	: 80
	Note	s:	1. 2. 3. 4.	Answer any six questions. Question No. 1 is compulsory. Assume suitable data wherever necessary. Illustrate your answer necessary with the help of neat sketches.	
1.		Dis	scuss	feed forward control and mention tuning rules for feed forward feed back control.	15
2.		Exp	plain	Internal Model Control (IMC) and discuss design of IMC controllers.	13
3.		Des	scribe	mathematical model of an ideal binary distillation column.	13
4.		sys	at is r tem? relopr	meant by adaptive control system? How many different types of adaptive control Discuss Model-Reference Adaptive Control (MRAC) and its recent ment.	13
5.		& 1	which	irect digital and supervisory control which one is used for regulatory control actions for servo operations? In a supervisory control mode, what are better as local rs, analog or digital devices?	13
5.		Plo		Froot locus diagram for a system with the following open loop transfer function $s = \frac{2k_s}{s^2 + 1}$	13
		Det	ermin	ne the value of K at the break in the point.	
7.	a)	Obt	ain th	ne z-transforms for	6
		i)	Ran	np function	
		ii)	Imp	ulse function	
		iii)	Exp	onential function	
1	b) :	Find	l the i	nverse z-transform of $\frac{3z}{(z-1)(z-0.4)}$ by method of partial fraction.	7

8.

7

Discuss Ziegler - Nichols controller settings.

- Calculate the value of gain 'K_C' needed to produce continuous oscillations in the control system shown in fig-when
 - a) n is 2
 - b) n is 3

9

6

- 9. a) The open loop transfer function of a control system is given as, $G(s) = \frac{1}{(s+1)(s+6)}$ sketch the Nyquist diagram.
 - b) Describe gain margin & phase margin with sketch.
- 10. a) Calculate analytically the ultimate gain for the transfer function $G(s) = \frac{k}{(s+1)^3}$
 - b) Obtain the transfer function for Damped oscillator.
