AU-1680

M.C.M. Part—I (Semester—II) Examination OPERATION RESEARCH TECHNIQUES

Paper—2MCM5

Time: Three Hours]

[Maximum Marks: 80

Note:—(1) Due credit will be given to neatness and adequate dimensions.

- (2) Assume suitable data wherever necessary.
- (3) Illustrate your answers with the help of neat sketches wherever necessary.
- 1. (a) Explain all features of operations research approach.

6

(b) Use two-phase simplex method to solve following LP problem.

Maximize
$$Z = 3x_1 + 2x_2 + 2x_3$$

subject to the constraints

(i)
$$5x_1 + 7x_2 + 4x_3 \le 7$$

(ii)
$$-4x_1 + 7x_2 + 5x_3 \ge -2$$

(iii)
$$3x_1 + 4x_2 - 6x_3 \ge 29/7$$
 and $x_1, x_2, x_3 \ge 0$

OR

2. (a) Use the Simplex method to solve the following LP problem:

$$Max Z = 20x_1 + 6x_2 + 8x_3$$

subject to

$$8x_1 + 2x_2 + 3x_3 \le 250$$

$$4x_1 + 3x_2 \le 150$$

$$2x_1 + x_3 \leq 50$$

and
$$x_1, x_2, x_3 \ge 0$$

10

VOX-36896

1

(Contd.)

(b) Write the dual of the following LP problem:

Minimize
$$Z_x = 3x_1 - 2x_2 + 4x_3$$

subject to the constraints

(i)
$$3x_1 + 5x_2 + 4x_3 \ge 7$$

(ii)
$$6x_1 + x_2 + 3x_3 \ge 4$$

(iii)
$$7x_1 - 2x_2 - x_3 \le 10$$

(iv)
$$x_1 - 2x_2 + 5x_3 \ge 3$$

(v)
$$4x_1 + 7x_2 - 2x_3 \ge 2$$

and
$$x_1, x_2, x_3 \ge 0$$

and $x_1, x_2, x_3 \ge 0$ 6

- (a) Determine an initial basic feasible solution to the following transportation problem 3. by using:
 - (i) NWCM
 - (ii) LCM

Destination

Source

	D _i	D_2	D ₃	D_4	Supply
A	11	13	17	14	250
В	16	18	14	10	300
С	21	24	13	10	400
Demand	200	225	275	250	

10

Machines (b)

		W	X	Y	Z
	Α	18	24	28	32
Jobs	В	8	13	17	18
	С	- 10	15	19	22

What are the job-assignment pairs that shall minimize the cost?

6

OR

2 VOX-36896 (Contd.)

www.sgbauonline.com

4. (a) Give steps of Gomory's all Integer Programming algorithm.

6

(b)

Emp.	loyees

		I	II	III	IV	V
	A	10	5	13	15	16
	В	3	9	18	13	6
Jobs	C	10	7	2	2	2
	D	7	11	9	7	12
	E	7	9	10	4	12

How should the jobs be allocated, one per employee, so as to minimize the total manhours?

(c) Consider the game with the following payoff table:

Player B

Player	Α	$\mathbf{B}_{_1}$	B_2	$\mathbf{B}_{_{3}}$	$\mathrm{B}_{_{4}}$
	$\overline{A_{l}}$	3	-5	0	6
	A_2	-4	-2	1	2
	A_{3}	5	4	2	3

Determine:

- (i) Strategy selection for each player
- (ii) The value of the game.

4

- 5. (a) Explain the following Inventory cost components:
 - (i) Purchase cost
 - (ii) Carrying cost
 - (iii) Ordering cost
 - (iv) Customer service cost.

8

(b) The following table shows the machine time (in hours) for 5 jobs to be processed on two different machines:

Job	:	1	2	3	4	5
Machine A		3	7	4	5	7
Machine B	:	6	2	7	3	4

Determine a sequence for the five jobs that will minimize the total elapsed time.

OR

VOX-36896

3

(Contd.)

6. (a) Find the sequence that minimizes the total elapsed time and processing time in hours required to complete the following jobs:

Job	:	1	2_	3	4	5	6
Machine A		4	8	3	6	7	5
Machine B	:	6	33	7	2	8	4

(b) We have five jobs, each of which must go through the machines A, B and C in the order ABC. Processing time (in hours) is as follows:

8

Job	:	1	_ 2	3	4	5
Machine A	;	5	7	6	9	5
Machine B	*	2	1	4	5	3
Machine C	:	3	7	5	6	7

Determine the sequence for the jobs that will minimize the total elapsed time.

7. (a) A small project is composed of 7 activities, whose time estimates are listed in the table below. Activities are identified by their beginning (i) and ending (j) node numbers.

Activity	Estimated Duration (weeks)					
(i-j)	Optimistic	Most Likely	Pessimistic			
1 – 2	1	1	7			
1 - 3	1	4	7			
1 - 4	2	j 2	8			
2 - 5	ı	1	1			
3 – 5	2	5	14			
4 – 6	2	5	8			
5 – 6	3	6	15			

- (i) Draw the network diagram of the activities in the project.
- (ii) Find the expected duration and variance for each activity. What is the expected project length?
- (iii) Calculate the variance and standard deviation of the project length. 3+3+4

VOX—36896 4 (Contd.)

- (b) Explain:-
 - (i) Total float
 - (ii) Independent float
 - (iii) Critical path.

6

OR

8. (a) Explain:

(b)

- (i) Optimistic time
- (ii) Pessimistic time
- (iii) Most likely time.

6

Activity	Predecessors	Duration (days)
A		6
В	A	4
С	В	7
D	A	2
Е	D	4
F	Е	10
G		2
Н	G	10
I	J, H	6
J		13
K	A	9
L	C, K	3
М	I, L	5

- (i) Draw an arrow diagram for this project.
- (ii) Indicate the critical path.
- (iii) For each non-critical activity, find the total and free float.

3+3+4

VOX-36896

5

(Contd.)

www.sgbauonline.com

9. (a) Use dynamic programming to solve the following problem:

Minimize
$$Z = y_1^2 + y_2^2 + y_3^2$$

subject to the constraint

$$y_1 + y_2 + y_3 = 10$$
 and $y_1, y_2, y_3 \ge 0$

(b) Write the steps of the Dual-Simplex algorithm.

OR

- 10. (a) Define:—
 - (i) Optimum solution
 - (ii) Optimum basic feasible solution
 - (iii) Basic feasible solution
 - (iv) Slack and surplus variables.
 - (b) Discuss the steps of simulation process.

8

8