B.E. Fourth Semester (Computer Science & Engineering, Computer Engineering) (CGS)

10312 : Analog & Digital ICs : 4 KS 02 / 4 KE 02

P. Pages: 2 Time: Three Hours

AW - 3043

Max. Marks: 80

6

7

7

6

7

6

Notes: 1.

- . Due credit will be given to neatness and adequate dimensions.
- 2. Assume suitable data wherever necessary.
- 3. Illustrate your answer necessary with the help of neat sketches.
- 4. Use of pen Blue/Black ink/refill only for writing the answer book.
- 1. a) Define the following terms for Op-Amp
 - i) Input offset voltage
- ii) CMRR

- iii) Slew Rate
- b) Draw the circuit of Inverting Amplifier using Op-Amp. Also derive the equation for gain of this circuit.

OR

- 2. a) Draw the circuit of Differentiator using Op Amp. Derive the expression for output voltage. Also draw the output waveform if the input is square wave.
 - b) Determine the output voltage for the circuit shown in fig. 2 (b) for $V_1 = 1V$ and $V_2 = 3V$.

- 3. a) Draw the block diagram of PLL and explain the function of each block.
 - Draw and explain block diagram of Timer IC 555 and list its applications.

OR

- 4. a) Draw the circuit for square wave generator using IC 555. Explain the operation along with waveforms. Derive the expression for Time period of output square wave.
 - b) With neat diagram explain the application of PLL as a frequency converter.
- 5. a) Express the following numbers into BCD and Excess 3 codes.
 - i) $(158)_{10}$
 - ii) $(101011)_2$

b)

	b)	i) Convert (10101101) ₂ to Gray Code.	8
		ii) Convert (162.862) ₁₀ into Binary.	
	-)	OR Finalsia Creat and and appass 2 and with examples Give application of Gray Code	7
6.	a)	Explain Gray code and excess – 3 code with examples. Give application of Gray Code.	,
	b)	Represent the decimal number 62 in following various codes.	7
		i) Binary Code ii) BCD Code	
		iii) Excess 3 Code iv) Gray Code	
		v) Octal Code vi) Hexadecimal Code	
7.	a) ,	Simplify the following function using $k - map$. $f = \Sigma m(0,1,2,3,5,7,9) + d(11,13,14,15)$	7
	b)	Simplify the following Boolean function using k-map & implement it using NAND gates only	7
		$f = \Sigma m (1, 2, 3, 5, 6, 7, 8, 9.12, 13, 15)$.	
8.	a)	OR Simplify the following function using Tabulation method.	10
	••)	$f(A,B,C,D) = \pi M(0,2,4,6,8,9,12,13)$	
	b)	Implement the following Boolean function with NOR - NOR logic.	4
		$f(x+y+z) = (\overline{x} + \overline{y} + \overline{z})$	
9.	a)	Design 40: 1 multiplexer using 8: 1 multiplexers.	7
	b)	Implement the combinational circuit for the following functions using PLA.	6
		$f_1 = \Sigma m(1, 3, 7)$ $f_2 = \Sigma m(2, 5, 6)$	
		OR	_
10.	a)	What is Full Adder? Draw the circuit using two half address and a suitable gate. Explain the same with truth table.	7
	b)	Implement the following functions using decoder.	6
		$f_1 = \Sigma m(0,1,3,4,6)$ $f_2 = \Sigma m(1,2,5,7)$	
11.	a)	Draw the circuit of 3 – bit ripple up counter along with its timing diagram.	6
	b)	What is Race around condition? Suggest suitable method to eliminate it and explain the same.	. 7
12.	a)	OR Draw the circuit and explain the operation of Johnson Counter.	6
	b)	State different types of shift registers. Explain the operation of 3 bit shift register with neat diagram.	7

AW - 3043 2