- 11. (c) Prove that the polynomial $1 + x + x^2 + \cdots + x^{p-1}$; where P is a prime number; is irreducible over the field of rational numbers.
 - (d) Let p(x) be a prime polynomial in F[x]. If $p(x) \mid f(x).g(x)$, then prove that $p(x) \mid f(x)$ or $p(x) \mid g(x)$, where f(x) and g(x) are polynomials over a field f.
 - (e) Show that the polynomial x²-3 is irreducible over the field of rational numbers. 2

Fifth Semester B. Sc. (Part - III) Examination

MATHEMATICS - X

(Modern Algebra)

P. Pages: 8

Time: Three Hours]

[Max. Marks: 60

Note: Question **one** is compulsory and attempt it once and solve **one** question from each unit.

- 1. Choose the correct alternative (1 mark each):—
 - (1) If N is a normal subgroup of finite group G then O(G/N) is equal to:
 - (a) $0(G) \cdot 0(N)$
- (b) O(G)/O(N)
- (c) 0(G) 0(N)
- (d) 0(G) + 0(N)
- (2) If N is normal subgroup of group G, then group G/N is known as:
 - (a) Factor group
- (b) Improper group
- (c) Cyclic group
- (d) Proper group
- (3) Kernel of homomorphism of group is a subgroup of:
 - (a) Domain set.
 - (b) Co-domain set

5200

- (c) Intersection of domain and codomain
- (d) All the above.
- (4) If $\phi: G \longrightarrow G'$ be an isomorphism, then for each a∈G
 - (a) O(a) = O(G(0))
 - (b) $\theta(a) = \theta(\phi(a))$
 - (c) O(a) = O(f(a))
 - (d) O(a) = O(e).
- (5) Which of the following is not an integral domain?
 - (a) $(Q, +, \cdot)$ (b) $(R, +, \cdot)$

 - (c) $(C, +, \cdot)$ (d) $(N, + \cdot)$
- (6) If (f(x), g(x)) = d(x), then which one of the following is not true:
 - (a) d(x) is monic
 - (b) d(x)|f(x) and d(x)|g(x)
 - (c) d'(x)|f(x) and $d'(x)|g(x) \Longrightarrow d'(x)|d(x)$
 - (d) d'(x)|f(x) and $d'(x)|g(x) \Longrightarrow d(x) \mid d'(x)$.

UNIT IV

- (a) Prove that every finite integral domain is a field.
 - (b) If R is a ring in which $x^2 = x$; $\forall x \in \mathbb{R}$, then prove that R is a commutative ring of characteristic 2.
- (c) Prove that every field is an integral domain. Does its converse true? Justify.
 - (d) Prove that any two isomorphic integral domain have isomorphic quotient field.

UNIT V

- 10. (a) If f is a field, $\alpha \in F$ and $f(x) \in F[x]$, then prove that $(x-\alpha)$ is a factor of f(x) iff $f(\alpha) = 0$.
 - (b) Let $f(x) = a_0 + a_1 x + \cdots + a_n x^n$ be a polynomial with integer coefficients. Suppose that for some prime number P; $P_{Aa_n}^{N}$, $P|a_1$, $P|a_2$. --- $P|a_{n-1}: P|a_0, P^2 \setminus a_0$. Then prove that f(x) is irreducible over the rationals.

AR - 580

(f) Let G be a group of real numbers with respect to addition and φ: G→G such that φ(x)=13x ∀x∈G; then prove that φ is homomorphism and hence find its kernel.

UNIT III

- 6. (a) Show that the set 'R' of integers modulo 7 under the addition and multiplication modulo 7 is a commutative ring with unity.
 - (b) Prove that 'S' subring of ring R iffa+(-b) ∈ S and a·b∈S; for all a, b∈S.
- 7. (c) Define ring without zero divisor. If R is a ring with unity, then prove that:
 - (i) a.(b-c)=a.b-a.c
 - (ii) $(-a) \cdot (-b) = a \cdot b$
 - (iii) $(-1) \cdot a = -a$; $\forall a, b, c \in \mathbb{R}$. 1+4
 - (d) If Z is the set of integers on which two operations defined as a⊕b = a+b-1 and a ⊙ b=a+b-ab; for every a, b ∈ z; then prove that(z; ⊕, ⊙) is a commutative ring with unity.

- (7) The identity element of the quotient group G|H is :
 - (a) H

(b) G

(c) G|H

- (d) e.
- (8) If $f:R \longrightarrow R^+$ defined by $f(x) = e^x$, then which of the following is not true:
 - (a) f is homomorphism
 - (b) f is not homomorphism
 - (c) f is isomorphism
 - (d) f is one to one.
- (9) In ring R if a²=a for all a∈R then R is called.
 - (a) Division ring
 - (b) Boolean ring
 - (c) Polynomial ring
 - (d) Ring of quotient.
- (10) If $f(x) = (a_0, a_1, a_2)$ be a polynomial over the field of reals and $\alpha + i\beta$ be the zero of f(x), then other zero of f(x) is:
 - (a) α

(b) β

(c) $\alpha - i\beta$

(d) None of these.

10

UNIT I

- 2. (a) Prove that every subgroup of cyclic group is a normal subgroup. 3
 - (b) If N is a normal subgroup of group G, then G/N is also a group under opration of multiplication of cosets. Prove this.
 - (c) Let (z, +) be the additive abelian group of integers. Let H={0, ±2, ±4, ±6, ---}} be a subgroup of group Z. Then show that H is a normal subgroup of Z. Obtain the quotient group Z/H and find it's order. 4
- 3. (d) Prove that if H is normal subgroup of group G, then prove that aH = Ha; $\forall a \in G$.
 - (e) Let N and M are two normal subgroup of group G, then prove that NM is also normal subgroup of G.
 - (f) Let G be a group in which for some integer n > 1, $(ab)^n = a^n b^n$ for all a, $b \in G$, then show that $G^{(n)} = \{x^n / x \in G\}$ is a normal subgroup of group G.

UNIT II

4. (a) If N is a normal subgroup of group G; then show that every quotient group G/N is a homomorphic image of the group G. Further show that Kernel of homomorphism is N.

4

- (b) If $\phi: G \to G'$ is a honomorphism with Kernel K, then prove that $G' \cong G/K$.
- (c) Prove that mapping $\phi: G \to G$ defined by $\phi(x)=x^2$ is homomorphism and find its Kernel where G is a group of non zero real numbers w.r.t. multiplication.
- 5. (d) If $\phi: G \rightarrow G'$ be homomorphism, then prove that:
 - (i) $\phi(e) = e'$ and

(ii)
$$\phi(x^{-1}) = (\phi(x))^{-1}$$
; $\forall x \in G$.

(e) Let $G \rightarrow G'$ be a onto homomorphism with Kernel K. If N' is normal subgroup of G' and $N = \{x \in G / \phi(x) \in N'\}$, then prove that :

$$G/N \cong G'/N'$$
 i.e. $G/N \cong \frac{G/K}{N/K}$.