B.Sc. (Part—II) Semester-IV Examination MATHEMATICS

Paper-VII

(Modern Algebra Groups and Rings)

Time: Three Hours]					[Maximum Marks : 60	
Note:—(1) Question No. 1 is compulsory and atter				ot it one	ce only.	
		(2)	Solve ONE question from each unit.		•	
1.	Choose the correct alternative (1 mark each):				10	
	(i)	A g	oup having only improper normal subgroup is called			
		(a)	a finite group	(b)	a permutation group	
		(c)	a simple group	(d)	None of these	
	(ii)	Eve	ry subgroup of a cyclic group is	_·		
		(a)	non abelian	(b)	cyclic	
		(c)	cyclic but not abelian	(d)	abelian but not cyclic	
	(iii)	The	identity permutation is			
		(a)	even	(b)	odd	
		(c)	even and odd	(d)	even or odd	
	(iv)	Let	G be a group. Then (ab)-1 is equal to		→	
		(a)	a-1b-1	(b)	$b^{-1}a^{-1}$	
		(c)	(ba) ⁻¹	(d)	None of these	
	(v)	A h	omomorphism of a group into itself is		.	
		(a)	a homomorphism	(b)	an isomorphism	
		(c)	an endomorphism	(d)	None of these	
	(vi)	An	integral domain has at least			
		(a)	One element	(b)	Two element	
		(c)	Three element	(d)	None of these	
	(vii)	If in	n a ring R, $x^2 = x \ \forall \ x \in R$, then R is			
		(a)	Commutative ring	(b)	Division ring	
		(c)	Boolean ring	(d)	Ring with unity	
	(viii)	A field which contains no proper subfield is called				
		(a)	Sub field	(b)	Prime field	
		(c)	Integral domain	(d)	Division ring	
	(ix)	The intersection of two left ideals of a ring R is				
		(a)	left ideal of R	(b)	right ideal of R	
		(c)	both (a) and (b)	(d)	None of these	
	(x)	The	The characteristic of an integral domain is:			
		(a)	even number	(b)	odd number	
		(c)	prime number	(d)	None of these	
					•	

UNIT-I

- 2. (a) Prove that the set $G = \{1, W, W^2\}$ is a group w.r.t. multiplication.
 - (b) Prove that every subgroup of a cyclic group is cyclic.
 - (c) If $f = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ and $g = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$ then prove that $f \cdot g \neq g \cdot f$.
- (p) Let G be a group. Prove that a non-empty subset H of G is a subgroup of G iff
 a, b ∈ H ⇒ a.b⁻¹ ∈ H.
 - (q) Find whether the following permutations are even or odd:
 - (i) $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 5 & 2 & 4 \end{pmatrix}$
 - (ii) $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 4 & 1 & 5 & 2 \end{pmatrix}$
 - (r) Define:
 - (i) Cyclic group
 - (ii) Order of an element of a group.

UNIT-II

- 4. (a) If H is a subgroup of a group G, then prove that any two right (left) cosets of H in G are either identical or disjoint.
 - (b) Prove that N is a normal subgroup of G if and only if $gNg^{-1} = N \ \forall \ g \in G$.
- 5. (p) Show that if G is abelian, then the quotient group G/N is also abelian.
 - (q) Let H be a subgroup of G and N(H) = $\{g \in G \mid gHg^{-1} = H\}$. Show that H is normal in G iff N(H) = G.
 - (r) Prove that the intersection of two normal subgroups of a group is a normal subgroup of G.

UNIT-III

- (a) If φ is a homomorphism of G into G' with Kernel K, then prove that K is a normal subgroup of G.
 - (b) If ϕ is homomorphism of a group G into a group G', then prove that :
 - (i) ϕ (e) = e' and
 - (ii) $\phi(x^{-1}) = (\phi(x))^{-1} \forall x \in G$

where e and e' are identities of G and G' respectively.

- (c) Let G be a group of real numbers under addition and φ : G → G such that φ(x) = 13x ∀ x ∈ G, then prove that φ is homomorphism.
- 7. (p) If ϕ is homomorphism of G onto G' with Kernel K, then prove that $G/K \approx G'$.
 - (q) Define:
 - (i) Homomorphism
 - (ii) Kernel of homomorphism.

Prove that any Kernel is non-empty.

2+3

3

2

WPZ---3353

UNIT-IV

- 8. (a) Prove that the intersection of any family of subrings of a ring R is a sub ring of R. 3
 - (b) If in a ring R, $x^3 = x \ \forall \ x \in R$, then show that R is commutative.
 - (c) Let the characteristic of the ring R be 2 and let $ab = ba \ \forall \ a, b \in R$ then show that $(a + b)^2 = a^2 + b^2$.
- 9. (p) Prove that Prime field of characteristic zero is isomorphic to the field Q of rational numbers.
 - (q) Let R be a ring with a unit element, 1, in which (ab)² = a²b² ∀ a, b ∈ R. Then prove that R is commutative.

UNIT-V

- 10. (a) If U is an ideal of a ring R with unity 1 and $1 \in U$, then prove that U = R.
 - (b) If R is a commutative ring with a unit element and M is an ideal of R, then prove that M is a Maximal ideal of R iff R M is a field.
 - (c) Let R be a commutative ring with unity. Then prove that every maximal ideal of R is a prime ideal.
- 11. (p) If U is an ideal of ring R, then prove that R|U is a homomorphic image of R.
 - (q) Let M be the ring of matrices of order 2 over the field R of real numbers and $U = \left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} | a, b \in R \right\}.$ Prove that U is a right ideal of M but U is not left ideal.
 - (r) Let $U = \{19n \mid n \in z\}$ be an ideal of the ring of integers Z and V be an ideal of Z with $U \subset V \subset Z$. Then prove that V = U or V = Z.

http://www.sgbauonline.com/