UNIT VI

12. (A) Define :--

- (i) Unit cell.
- (ii) Center of symmetry.
- (B) Derive Bragg's equation 2d $\sin \theta = n\lambda$. 4
- (C) Draw the diagrams for Bravais lattices of cubic system and calculate the number of atoms per unit cell in F.C.C.

OR

- 13. (P) State law of rational indices. What are Miller indices?
 - (Q) Explain the following with suitable diagram:—
 - (i) Plane of symmetry.
 - (ii) Axis of symmetry. 4
 - (R) Interplanar distance for 100 planes of SCC was 0.282 nm. The glancing angle for first order x-ray reflection from 100 planes was found to be 5.9°. Calculate the wavelength of x-rays.

6600

Fourth Semester B. Sc. (Part - II) Examination (New Course)

4S CHEMISTRY

P. Pages: 8

Time: Three Hours]

Max. Marks: 80

Note: (1) Question number One is compulsory.

- (2) Solve One question from each unit.
- (3) Draw diagrams and give equations wherever necessary.
- (4) Use of scientific calculator is allowed.
- 1. (A) Fill in the blanks :--
 - (i) Actinides beyond atomic number 92 are called as ——— elements.
 - (ii) Depression of freezing point is a —property.
 - (iii) Transition metal salts are coloured due to the presence of partially filled——orbitals.
 - (iv) Aniline is a ——— base than methyl amine.
 - (B) Select the correct alternative :-
 - (i) Number of elements in 4f series are:
 - (a) 10

(b) 14

AR - 560

P.T.O.

	(ii)	Magnetic moment of a diamagnetic substance is :
		(a) +ve (b) -ve
		(c) zero (d) None of these.
	(iii)	The number of atoms per unit cell in body centred cubic lattic (bcc) is
		(a) 1 (b) 2
		(c) 3 (d) 4
	(iv)	Sucrose is a ———
		(a) Monosaccharide
		(b) Disaccharide
		(c) Trisaccharide
		(d) Polysaccharide. 2
)	Ans	wer in one sentence :
	(i)	What is an ore ?
	(ii)	Why cobalt is transition element?
	(iii)	What is the structural formula of benzene diazonium chloride?
	(iv)	State the law of symmetry in crystals.

(d) 18

(c) 15

(C) A solution cantaining 0.01 kg of sodium chloride in 1 kg of water freezes at 272.396K. The molal depression constant of water is 1.85 k kg mol⁻¹. Calculate the degree of dissociation of sodium chloride in the solution (molar mass of NaCl = 58.5 x 10⁻³ kg mol⁻¹).

OR

- 11. (P) Define following:—
 - (i) Molal elevation constant.
 - (ii) Colligative properties.
 - (Q) Describe Rast's method to determine depression of freezing point and molecular weight of solute.
 - (R) Calculate the molal depression constant for water:

Given:

- (i) Latent heat of fusion of ice at 0° C = 6.024 kJ mol⁻¹
- (ii) $R = 8.314 \text{ Jk}^{-1} \text{ mol}^{-1}$
- (iii) Molar mass of water = $18 \times 10^{-3} \text{ kg mol}^{-1}$

AR - 560

7

P.T.O.

(C

9. (P) Complete the following reactions:-

- (i) $2 \bigcirc NaOn$ Zn dust NaOn
- (ii) $\sim \frac{N \pi_{\perp}}{\text{NaOH}} \sim ?$
- (Q) Explain why:—
 - (i) Methyl amine is much stronger base than aniline.
 - (ii) P-Nitroaniline is much weaker base than aniline.
- (R) (i) How will you convert :—

 Aniline to benzene diazonium chloride.
 - (ii) Define Zwitter ion. 4

UNIT V

- 10. (A) Describe Cottrell's method for determination of elevation of boiling point. 4
 - (B) Derive an equation for the determination of degree of association from Van't Hoff's factor.

UNIT I

2. (A) Which of the following transition metal ions are expected to be coloured and why?

$$Sc^{3+}$$
, Ni^{2+} , Co^{2+} , Zn^{2+}

(B) Explain the variable oxidation state shown by the following outer electronic configuration.

$$3d^54s^2$$
, $3d^54s^1$, $3d^34s^2$, $3d^94s^2$ 4

- (C) Use Ellingham diagram to explain:
 - (i) Why all the lines slope upward from left to right?
 - (ii) What happens when a line crosses the $\triangle G = 0$ axis? $2 \times 2 = 4$

OR

- (p) Write electronic configuration of 3d series transition elements.
 - (Q) Discuss the catalytic activity of first transition series elements.
 - (K) Define Mineral. How it differs from ore ?

UNIT II

4. (A) Discuss the magnetic properties of lanthanides.

AR – 560 3 P.T.O.

AR - 560

6

(Q) Starting from acetoacetic ester how would you synthesise following?	n what respect lanthanides differ from actinides.	
(i) Acetyl acetone	Explain the froath floatation process of	(C) I
(ii) Acetic acid. 4	concentration ore. 4	
(R) How will you bring about following Conversions?	OR	
(i) Glucose to fructose.	What is lanthanide contraction? Explain. 4	5. (P) \
(ii) Fructose to Glucose. 4	Discuss the electronic configuration of	-
UNIT IV	Discuss the electrolytic refining of metals.	
8. (A) How will you prepare :	4	(K) 1
(i) Nitrobenzene from benzene. 2	UNIT III	
(ii) Phenol from Benzene diazonium chloride.	Discuss the molecular orbital picture of haphthalene.	
: (B) How does aniline react with the following:	What is a reactive methylene group ? How	
(i) Carbonyl chloride.	s ethyl acetoacetate prepared? 4	·- i
(ii) Carbon disulphide. 4	Discuss the open chain structure of glycose.	(C) I
(C) (i) Give the laboratory preparation of benzene diazonium chloride.	OR	
(ii) How alanine is prepared by Strecker's synthesis. 4	What are polynuclear hydrocarbans? Discuss Haworth synthesis of Naphthalene. 4	
AR - 560 5 P.T.O.	4	AR -560