B.Sc. Part-I (Semester-II) (CBCS) Examination
 MATHEMATICS (DSC-III)

(Ordinary Differential Equations)

Paper-III

Time : 3 Hours]
[Maximum Marks : 60
N. B. :- Question No. 1 is compulsory, attempt it once only.

1. Choose correct alternative :
(i) The order and degree of differential equation $\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+2\left(\frac{d y}{d x}\right)^{3}+3 y=x^{2}-e^{3 x}$ is :
(a) Order 1, degree 3
(b) Order 2, degree 3
(c) Order 2, degree 2
(d) Order 2, degree 1
(ii) Integrating factor of the differential equation $\frac{d y}{d x}+y / x=x^{2}$ is :
(a) x
(b) $\quad \log x$
(c) e^{x}
(d) $x e^{x}$
(iii) The orthogonal trajectories of the family of semi-cubical parabolas $a y^{2}=x^{3}$ is:
(a) $x^{2}+3 y^{2}=c$
(b) $2 x^{3}-y^{2}=c$
(c) $2 x^{2}-3 y^{2}=c$
(d) $2 x^{2}+3 y^{2}=c$
(iv) General solution of the D. E. $\sin (\mathrm{Px}-\mathrm{y})=\mathrm{p}$ by using Clairaut's form is :
(a) $y=c x-\sin ^{-1} c$
(b) $y=c x+\sin ^{-1} c$
(c) $y=c x-\sin c$
(d) $y=c x+\sin c$
(v) The roots of the $\mathrm{DE}\left(\mathrm{D}^{2}-4 \mathrm{D}+13\right)^{2} \mathrm{y}=0$ are :
(a) Equal and real
(b) Distinct and real
(c) Complex and repeated
(d) None of these
(vi) Particular Integral of $\frac{1}{\mathrm{P}\left(\mathrm{D}^{2}\right)} \sin (\mathrm{ax}+\mathrm{b})$ is:
(a) $\frac{3_{1}}{\mathrm{P}\left(-\mathrm{a}^{2}\right)} \sin (\mathrm{ax}-\mathrm{b})$
(b) $\frac{1}{\mathrm{P}\left(-\mathrm{a}^{2}\right)} \sin (\mathrm{ax}+\mathrm{b})$
(c) $\frac{1}{\mathrm{P}\left(\mathrm{a}^{2}\right)} \sin (\mathrm{ax}-\mathrm{b})$
(d) $\frac{1}{\mathrm{P}\left(\mathrm{a}^{2}\right)} \sin (\mathrm{ax}+\mathrm{b})$
(vii) Let y_{1} and y_{2} be any two solutions of the $D E y^{\prime \prime}+P y^{\prime}+9 y=0, p, q \in C^{0}$. If $w\left(y_{1}, y_{2}, x\right)=0$ then
(a) y_{1} is linearly dependent and y_{2} is linearly independent
(b) y_{1} is linearly independent and y_{2} is linearly dependent
(c) y_{1} and y_{2} are linearly independent
(d) y_{1} and y_{2} are linearly dependent
(viii) Particular solution of the $\mathrm{DE} \mathrm{y}^{\prime \prime}+\mathrm{Py}^{\prime}+\mathrm{Qy}=0$ is $\mathrm{y}=\mathrm{e}^{\mathrm{x}}$ if
(a) $P+x Q=0$
(b) $1+\mathrm{P}+\mathrm{Q}=0$
(c) $1-\mathrm{P}+\mathrm{Q}=0$
(d) $\mathrm{m}^{2}+\mathrm{mP}+\mathrm{Q}=0$
(ix) Uranium disintegrates at a rate proportional to the amount present at any instant. If M_{1} and $\mathrm{M}_{1} / 2$ grams of uranium are present at times \mathbf{T}_{1} and T_{2} respectively, then the half of uranium is :
(a) $\frac{1}{2}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)$
(b) $\mathrm{T}_{2}-\mathrm{T}_{1}$
(c) $\frac{1}{3}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)$
(d) $2 \mathrm{~T}_{2}-\mathrm{T} 1$
(x) The temperature of water initially is $100^{\circ} \mathrm{C}$ and that of surrounding is $20^{\circ} \mathrm{C}$. If the water cools down to $60^{\circ} \mathrm{C}$ in first 20 minutes, then the time required to fall temperature up to $30^{\circ} \mathrm{C}$ is :
(a) 64 min
(b) 62 min
(c) 60 min
(d) 58 min

UNIT-I

2. (a) Show that:
$\cos x(\cos x-\sin \alpha \sin y) d x+\cos y(\cos y-\sin \alpha \sin x) d y=0$ is exact and solve.
OR
(b) Solve the $D E x^{2} y-x^{3} \frac{d y}{d x}=y^{4} \cos x$.
(c) Define primitive of a differential equation. Also, find the DE associated with the primitive $y=A \cos m x+B \sin m x$ where A and B being arbitrary constants.

OR

(d) Show that the differential equation $x(x-y) d y+y^{2} d x=0$ is homogeneous and then solve.

UNIT-II

3. (a) Solve $3 x^{4} p^{2}-x p-y=0$.
(b) Prove that the system of confocal conics $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}+?}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}+?}=1$ is self-orthogonal.
(c) Explain Clairaut's equation and solve $\sin \mathrm{px} \cos \mathrm{y}=\cos \mathrm{px} \sin \mathrm{y}+\mathrm{P}$.

OR

(d) Solve $\mathrm{P}^{2}+2 \mathrm{Py} \cot \mathrm{x}=\mathrm{y}^{2}$.

UNIT-III

4. (a) Solve $\frac{d^{2} y}{d x^{2}}+a^{2} y=x \cos a x$.

OR

(b) Solve the DE :

$$
\begin{equation*}
x^{3} \frac{d^{3} y}{d x^{3}}+2 x^{2} \frac{d^{2} y}{d x^{2}}+2 y=10\left(x+\frac{1}{x}\right) \tag{6}
\end{equation*}
$$

(c) Solve $\left(D^{3}+3 D^{2}+3 D+1\right) y=e^{-x}$

OR

(d) Solve $\left(D^{3}-3 D^{2}+9 D-27\right) y=\cos 3 x$.

UNIT-IV

5. (a) Solve $\mathrm{y}^{\prime \prime}-\frac{2}{\mathrm{x}^{2}} \mathrm{y}^{\prime}+\left(1+\frac{2}{\mathrm{x}^{2}}\right) \mathrm{y}=\mathrm{xe}^{-x}$.

OR

(b) Solve the $\mathrm{DE}\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}-a^{2} y=0$ of which $y=c e^{a \sin ^{-1} x}$ is an integral.
(c) If y_{1} and y_{2} are linearly dependent differentiable functions then show that their Wronskian vanishes identically.

OR

(d) Solve the $\mathrm{DE} \mathrm{y}^{\prime \prime}+\mathrm{n}^{2} \mathrm{y}=\operatorname{cosec} \mathrm{nx}$ by using variation of parameters.

UNIT-V

6. (a) The equation of an $L R$ circuit is given by $L \frac{d I}{d t}+R I=\sin 10 t$. If $I=0$ at $t=0$, find the expression for I in terms of t .

OR

(b) A man deposits a sum in a bank at 6 percent Compound interest. The compounding is continuous. How much shall he deposit if he will get Rs. 50000 at the end of 4 years?
(c) If 30% of a radioactive substance disappeared in 10 days, how long will it take for 90% of it to disappear.

OR

(d) Water at temperature $100^{\circ} \mathrm{C}$ cools in 10 minutes to $88^{\circ} \mathrm{C}$ in a room of temperature $25^{\circ} \mathrm{C}$. Find the temperature of water after 20 minutes.

