B.Sc. Part-I (Semester-II) (CBCS) Examination

MATHEMATICS (DSC-III)

(Ordinary Differential Equations)

Paper-III

Time: 3 Hours] [Maximum Marks: 60

N. B.: — Question No. 1 is compulsory, attempt it once only.

1	C_1	4	alternative	
	LINOOSE	COTTECT	alternative	•

10

- (i) The order and degree of differential equation $\left(\frac{d^2y}{dx^2}\right)^2 + 2\left(\frac{dy}{dx}\right)^3 + 3y = x^2 e^{3x}$ is:
 - (a) Order 1, degree 3
- (b) Order 2, degree 3
- (c) Order 2, degree 2
- (d) Order 2, degree 1
- (ii) Integrating factor of the differential equation $\frac{dy}{dx} + \frac{y}{x} = x^2$ is:
 - (a) x

(b) log x

(c) e^x

- (d) xe^x
- (iii) The orthogonal trajectories of the family of semi-cubical parabolas $ay^2=x^3$ is :
 - (a) $x^2 + 3y^2 = c$

(b) $2x^3 - y^2 - a$

(c) $2x^2 - 3y^2 = c$

- (d) $2x^2 + 3y^2 = c$
- (iv) General solution of the D. E. sin(Px y) = p by using Clairaut's form is :
 - (a) $y = cx \sin^{-1}c$

(b) $y = cx + sin^{-1}c$

(c) $y = cx - \sin c$

- (d) y = cx + sin c
- (v) The roots of the DE $(D^2 4D + 13)^2$ y = 0 are :
 - (a) Equal and real

- (b) Distinct and real
- (c) Complex and repeated
- (d) None of these
- (vi) Particular Integral of $\frac{1}{P(D^2)}$ sin (ax + b) is:
 - (a) $\frac{1}{P(-a^2)} \sin{(ax-b)}$
- (b) $\frac{1}{P(-a^2)} \sin{(ax+b)}$
- (c) $\frac{1}{P(a^2)} \sin(ax b)$
- (d) $\frac{1}{P(a^2)} \sin(ax+b)$

	(vii)	Let y_1 and y_2 be any two solutions of the DE $y'' + Py' + 9y = 0$, $p, q \in C^o$. If $w(y_1, y_2, x) = 0$ then
		(a) y_1 is linearly dependent and y_2 is linearly independent
		(b) y_1 is linearly independent and y_2 is linearly dependent
		(c) y_1 and y_2 are linearly independent
		(d) y_1 and y_2 are linearly dependent
	(viii)	Particular solution of the DE $y'' + Py' + Qy = 0$ is $y = e^x$ if
	/	(a) $P + xQ = 0$ (b) $1 + P + Q = 0$
	L	(a) $P + xQ = 0$ (b) $1 + P + Q = 0$ (c) $1 - P + Q = 0$ (d) $m^2 + mP + Q = 0$
	(ix)	Uranium disintegrates at a rate proportional to the amount present at any instant. If $\mathbf{M}_{\scriptscriptstyle 1}$ and
		$\frac{M_1}{2}$ grams of uranium are present at times \mathbf{T}_1 and \mathbf{T}_2 respectively, then the half of uranium is:
		(a) $\frac{1}{2} (T_2 - T_1)$ (b) $T_2 - T_1$
		(c) $\frac{1}{3} (T_2 - T_1)$ (d) $2T_2 - T1$
	(x)	The temperature of water initially is 100° C and that of surrounding is 20° C. If the water cools down to 60° C in first 20 minutes, then the time required to fall temperature up to 30° C is :
		(a) 64 min (b) 62 min
		(c) 60 min (d) 58 min
		UNIT—I
2.	(a)	Show that:
		$\cos x (\cos x - \sin \alpha \sin y) dx + \cos y (\cos y - \sin \alpha \sin x) dy = 0$ is exact and solve.
		OR
	(b)	Solve the DE $x^2y - x^3 \frac{dy}{dx} = y^4 \cos x$.
	(c)	Define primitive of a differential equation. Also, find the DE associated with the primitive
		$y = A \cos mx + B \sin mx$ where A and B being arbitrary constants.
		OR
	(d)	Show that the differential equation $x(x - y)dy + y^2dx = 0$ is homogeneous and then solve. 1+3
		UNIT—II
3.	(a)	
		OR

LT-961 2 (Contd.)

6.