B.Sc. Semester-I (Old) Examination MATHEMATICS-I

(Algebra and Trigonometry)

	(Benin mit	. Iligonometry)	
Time—Three	Hours]	[Maximum	Marks—60
N.B. :		1 is compulsory a n from each unit.	nd attempt
1. Choose	the correct alt	ernatives :	
(i) The	value of cose	ec(iz) =	1
(a)	cosech z		
(b)	i cosech z	***	
(c)	-i cosech z		
(d)	cosec z		
	e rank of a squ the matrix is	nare matrix is equal	to its order
(a)	Singular		
(b)	Non singular		
(c)	Symmetric		
(d)	Hermitian		
(iii) The	value of e ^{-πi} i	s :	. 1.
(a)	1		
(b)	-1		
(c)	i		
(d)	-i		
UWO-45387	,	1	(Contd.)
			,

(iv) The re	real part of sin (x + iy) is:		(e)	If a, b, c are integers such that $a \equiv b \pmod{a}$	m)
(a) s	sinx coshy			then prove that $a + c \equiv (b + c) \pmod{m}$.	3
(b)c	cosx sinhy		(f)	If $(a, b) = 1$ and $a \mid c, b \mid c$ then prove that ab	c.
(c) s	sinx sinhy				3
(d) c	cosx coshy			UNIT—V	
	is finite group of n elements, then order of G is:	10	. (a)	Prove that a non-empty subset H of group G subgroup of G iff:	is
(a) n	n material and the transfer of the second			(i) $a, b \in H \Rightarrow a \cdot b \in H$ and	
(b) -	-n - (1.2)			(ii) $a \in H \Rightarrow a^{-1} \in H$.	4
(c) n (d) n	4		(b)	In a group G, prove that $(ab)^{-1} = b^{-1} \cdot a^{-1}$ for $a, b \in G$.	all 3
(vi) The e	eigen values of a Hermitian matrix are: 1		(c)	Prove that $G = \{1, -1, i, -i\}$ is a cyclic growith respect to multiplication.	up 3
(b) p	oure imaginary	11.	(d)	Prove that intersection of any two subgroups	of
	zeros			group G is a subgroup of G.	4
` '	None of these		(e)	Prove that every cyclic group is abelian.	3
(vii) The nature of the roots of an equation of degree			(f)	In a group G, prove that:	
` '	Sound by:			$(ab)^2 = a^2b^2$ for all $a, b \in G$.	3
	Cardan's method	• · · · · · · · · · · · · · · · · · · ·			
, ,	Ferraari's method				
(c) E	Descarte's rule of sign	And a			

UWO-45387

2

(d) None of these

(Contd.)

UWO-45387

7

1750

matrix
$$A = \begin{bmatrix} 2 & 4-i & 6i \\ 4+i & 1 & 3 \\ -6i & 3 & 0 \end{bmatrix}$$

is Hermitian matrix.

3

(f) Prove that every invertible matrix has unique inverse.

UNIT-IV

- 8. (a) Prove that a, b, $c \in Z$:
 - (i) $a \mid b \Rightarrow a \mid bc$
 - (ii) $a \mid b$ and $b \mid c \Rightarrow a \mid c$
 - (iii) $a \mid b$ and $a \mid c \Rightarrow a \mid (b \pm c)$
 - (iv) $a \mid b$ and $a \mid c \Rightarrow a \mid (bx \pm cy); \forall x, y \in Z$.

4

- (b) State well order principle and using it prove that there is no integer between 0 and 1.
- (c) Define equivalence relation and show that on: $A = \{3, 1, -5\}; R = \{3, -5\}, (-5, 3), (1, 1),$ $(3, 3), (3, 1), (-5, 1), (-5, -5), (1, 3), (1, -5)\};$

is an equivalence relation.

e relation.

9. (d) Find g.c.d. of 214 and 192 and express it in two ways in the form 214 m + 192 n.

UWO---45387

6

(Contd.)

- (viii) Let R be relation on a non-empty set A then R is reflexive relation if:
 - (a) aRa
 - (b) $aRb \Rightarrow bRa$
 - (c) aRb & bRc \Rightarrow aRc
 - (d) None of these
- (ix) If i and 1 + i are the roots of an equation $x^4 2x^3 + 3x^2 2x + 2 = 0$ then other roots are:
 - (a) -i, 1 + i
 - (b) i, 1 i
 - (c) -i, -1 i
 - (d) -i, 1 i
- (x) The diagonal elements of a Skew-Hermitian matrix are:
 - (a) all zero
 - (b) all reals
 - (c) zero or imaginary
 - (d) all 1's

UNIT-I

2. (a) State and prove Demovier's Theorem for positive integers.

UWO-45387

3

(Contd.)

(b) If $u = \tan\left(\frac{\pi}{4} + \frac{\alpha}{2}\right)$ then prove that :

 $\tanh\left(\frac{\mathbf{u}}{2}\right) = \tan\left(\frac{\alpha}{2}\right).$

- (c) Separate real and imaginary parts of tan(x + iy).
- 3. (d) Prove that:

 $\tanh^{-1} x = \frac{1}{2} \log \left(\frac{1+x}{1-x} \right); |x| < 1.$

- (e) If $a = \cos \alpha + i \sin \alpha$ and $b = \cos \beta + i \sin \beta$, then show that $a^2 + b^2 = 2ab \cos(\alpha \beta)$.
- (f) Find the all possible values of $(-1)^{1/5}$.

UNIT-II

- 4. (a) Solve the equation $4x^3 + 20x^2 23x + 6 = 0$ two of its roots being equal.
 - (b) If f(x) is a polynomial over a field F and a ∈ F,
 then prove that (x a) divides f(x) if and only if
 f(a) = 0.
 - (c) Find the condition that the roots of the equation $x^3 ax^2 + bx c = 0$ are in A.P.

UWO-45387 4 (Contd.)

- 5. (d) Solve the equation $x^3 15x = 126$ by Cardan's method.
 - (e) State and prove the remainder theorem for polynomials.

UNIT—III

6. (a) Show that the matrix A satisfies its own characteristic equation, where:

$$A = \begin{bmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix}.$$

- (b) If λ is characteristic root of matrix A then prove that λ^2 is characteristic root of A^2 .
- (c) Find the eigen values of the matrix:

$$A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}.$$

7. (d) Verify Cayley-Hamilton theorem for the matrix:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}.$$

UWO-45387 5 (Contd.)