## B.Sc. Part-I Semester-I Examination <br> CHEMISTRY

Time : Three Hours]
[Maximum Marks : 80
N.B. :- (1) All questions are compulsory.
(2) Question No. $\mathbf{1}$ carries $\mathbf{8}$ marks, while each of the remaining SIX questions carries 12 marks.
(3) Draw diagram and write equations wherever necessary.
(4) Use of scientific calculator is allowed.

1. (A) Fill in the blanks :
(i) The species containing odd electron is called
(ii) Benzene is aromatic while cyclooctatetraene is $\qquad$ .
(iii) The process is carried out at constant temperature during each step is called as ____ process.
(iv) Entropy is a measure of $\qquad$ -.
$1 / 2 \times 4=2$
(B) Choose the correct alternative :
(i) Which of the following is $\mathrm{O}, \mathrm{P}$ directing group ?
(a) $-\mathrm{NH}_{2}$
(b) -CN
(c) $-\mathrm{NO}_{2}$
(d) -CHO
(ii) The electronegativity values can be determined by :
(a) Mulliken scale
(b) Pauling scale
(c) pH Scale
(d) Both (a) and (b)
(iii) In water system the degree of freedom at triple point is :
(a) One
(b) Two
(c) Zero
(d) Three
(iv) Valence shell electronic configuration of alkali metal is :
(a) $\mathrm{ns}^{2}$
(b) $\mathrm{ns}^{2} \mathrm{np}^{2}$
(c) $\mathrm{ns}^{2} \mathrm{np}^{3}$
(d) $\mathrm{ns}^{1}$
$1 / 2 \times 4=2$
(C) Answer the following in one sentence each :
(i) Define carbanion.
(ii) Define screening effect.
(iii) Define covalent radius.
(iv) Define adiabatic process.

## UNIT-I

2. (A) Define ionisation potential. Explain the periodic variation of ionisation potential along a period and a group of periodic table.
(B) Explain how lattice energy is calculated by Born-Haber's cycle.
(C) Explain any two factors favouring ionic bond formation.

## OR

3. (P) Define :
(i) van der Waal's radii
(ii) Metallic Radius.
(Q) How will you determine electronegativity of an atom by using Pauling scale ? 4
(R) Calculate effective nuclear charge on 4 s electron in Potassium. (K - at. No. 19). 4 UNIT-II
4. (A) Write the electronic configuration of II A group elements.
(B) Discuss the oxidation states of carbon family elements.
(C) Discuss the diagonal relationship between Be and Al .

> OR
5. (P) What are fullerenes ? Give their applications.
(Q) Explain the structure of Diamond and Graphite.
(R) How will you prepare diborane from :
(i) $\mathrm{B}_{2} \mathrm{O}_{3}$
(ii) $\mathrm{NaBH}_{4}$.

## UNIT-III

6. (A) What happens when :
(i) Ethyl bromide reacts with sodium metal in presence of dry ether, and
(ii) Methane reacts with chlorine in presence of UV light ?
(B) Explain the stability of carbocation on the basis of :
(i) Inductive effect
(ii) Resonance effect.
(C) Explain the mechanism for addition of hydrogen bromide to propylene in absence of organic peroxide.
7. (P) How will you prepare the following ?
(i) Acetylene from ethylene dibromide
(ii) Ethane from Acetylene.
(Q) What are carbocations ? Give their method of generation.4
(R) Define electromeric effect. Explain its types.

UNIT—IV
8. (A) Discuss the Kekule's structure determination of benzene.
(B) How does benzene reacts with :
(i) Conc. $\mathrm{HNO}_{3}$ and Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
(ii) Acetyle Chloride in presence of $\mathrm{AlCl}_{3}$.
(C) Identify which of the following compounds are aromatic and antiaromatic :

(ii)

(iii)

(iv)


## OR

9. (P) Explain the following terms with suitable examples :
(i) Ortho-para directing group
(ii) Meta-directing group.
(Q) Discuss the mechanism of nitration of benzene.
(R) What are the characteristics of antiaromatic compounds ?

UNIT-V
10. (A) Distinguish between isothermal and adiabatic process.
(B) Describe the four steps of Carnot cycle.
(C) Define the term entropy and give physical significance of it.

OR
11. (P) Calculate the entropy change when 0.02 moles of an ideal gas at 298 K and allowed to expand from $0.5 \mathrm{dm}^{3}$ to double its volume and simultaneously heated to 373 K .
(Given $\mathrm{V}=12.6 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ ).
(Q) Explain the terms :
(i) Isothermal process
(ii) Efficiency of Heat engine.
(R) Show that entropy change for reversible and isothermal process taken together is zero.
12. (A) Draw well labelled diagram of the sulphur system and explain the significance of curves.
(B) Derive the relationship between critical constant in terms of van der Waal's constant.
(C) Calculate mean velocity and root mean square velocity of methane molecule at $27^{\circ} \mathrm{C}$.

## OR

13. (P) Define the following terms with examples :
(i) Components
(ii) Phase.
(Q) Explain Maxwell-Boltzmann Distribution Law.
(R) Calculate the pressure exerted by 2 mole of water vapour in 20 liters at $100^{\circ} \mathrm{C}$, using (a) the ideal gas law and (b) van der Waals equation.
(Given : $\mathrm{a}=5.52 \ell^{2} \mathrm{~atm} \mathrm{~mol}^{-2}$ and $\mathrm{b}=0.0304 \ell \mathrm{~mol}^{-1}, \mathrm{R}=0.082$ lit $\mathrm{atm} \mathrm{K} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$ )
