AT-432

B.C.A. (Part-I) Semester-II Examination

NUMERICAL METHODS

Paper—2ST4

	1 apei — 2514	
Time:	Three Hours]	[Maximum Marks : 60
Note :-	-(1) All questions carry equal marks.	
	(2) All questions are compulsory.	
1. (a)	Explain method of least square regression.	4
(b)	Fit a multiple linear regression to the following data:	
	$x_1: 0 2 2.5 1 4 7$	
	$x_2: 0 1 2 3 6 2$	
	y: 5 10 9 0 3 27	4
(c)	State the normal equation for fitting a second degree parabo	la. 4
	OR	
2. (a)	Explain scatter diagram in detail.	4
(b)	Fit a straight line to the given set of data:	
	x : 1 2 3 4 5 6	
	y : 4.05 7.12 9.65 12.20 15.20 19.00	4
(c)	What do you mean by Regression Analysis.	4
3. (a)	Explain what is non-linear regression.	4
(b)	Fit an exponential curve to the following data:	
	x : 0.4 0.8 1.2 1.6 2 2.3	
	y : 800 975 1500 1950 2900 3600	4
(c)	Explain what is transcendental equation? Explain the methequation.	nod to fit transcendental 4
	OR	
UNW—24	1801	(Contd.)

www.sgbauonline.com

4.	(a)	Fit a second degree curve $y = a + bx + cx^2$ to the following data relating to profit is	n
		Year (x) : 1980 1982 1984 1986 1988 (y) : 125 140 165 195 230	
		Estimate the profit in the year 1995.	4
	(b)	How will you reduce non-linear equation in linear form ?	4
	(c)	Explain the method for fitting of the polynomial functions to the given data.	4
5.	(a)	State Newton's Gregory forward interpolation formula. In which case is it useful?	6
	(b)	The population of a country in the decennial census was as under. Estimate the population for the year 1925:	
		Year(x) : 1891 1901 1911 1921 1931	
		Population : 46 66 81 93 101 in thousands (y)	6
		OR	
6.	(a) (b)	Derive Lagrange's interpolation formula. Using Newton's divided difference formula, find the value of y corresponding to $x = 10$ form the following table:	6
		x: 5 6 9 11 y: 12 13 14 16	6
7.	(a)	Explain inverse interpolation technique.	4
	(b)	Explain the spline interpolation technique.	4
	(c)	Apply Lagrange's formula inversely to find the age for which the annuity value is 13.6 given the following table:	5,
		Age x : 30 35 40 45 50 A.V. : 15.9 14.9 14.1 13.3 12.5	1
		OR	
8.	, -		4
UNV	V -24	801 2 (Contd	.)

www.sgbauonline.com

(c) Obtain a value of x where $y_x = 19$. Given the following values:

x : 0 1 2f(x) : 0 1 20

4

9. (a) Obtain Simpson's 1/3rd rule by using general quadrature formula. Evaluate:

 $\int_{0}^{3} \cos^{2} x \, dx, \ b = 6.$

6

(b) State and prove trapezoidal rule of numerical integration.

6

OR

10. (a) Evaluate:

 $\int_{0}^{1} \frac{dx}{1+x}$ approximately in step of 0.25 by

(i) Trapezoidal rule

(ii) Simpson's 3/8th rule.

6

(b) State general quadrature formula for numerical integration.

6

UNW--24801

www.sgbauonline.com