(c) By using Lagrange's inverse interpolation formula compute x for $\mathrm{y}=1.6865$

$$
\begin{array}{llllll}
\mathrm{x}: & 0.48 & 0.52 & 0.61 & 0.63 \\
\mathrm{y}: & 1.616 & 1.682 & 1.840 & 1.878 & 4
\end{array}
$$

9. (a) State the formula for trapezoidal rule of a integration.
(b) Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ by using

Simpson's $1 / 3$ rule.
8

OR

10. (a) Explain what do you mean by numerical integration ?

4

(b) Solve using trapezoidal rule the value of $\int_{4}^{5.2 \log x d x}$, given

	x	$:$	4.0	4.2	4.4	4.6
$\log _{10} \mathrm{x}$	$: 1.3863$	1.4351	1.4816	1.5260	1.5686	1.6094

P. Pages : 4

Time : Three Hours] [Max. Marks : 60
Note : (1) All questions carry equal marks.
(2) All questions are compulsory.

1. (a) Explain what do you mean by linear regression.
(b) Fit a straight line to the following data

$\mathrm{X}:$	1	2	3	4	6.	8
$\mathrm{Y}:$	2.4	3	3.6	4	5	6
						4

(c) Obtain the normal equations for fitting a straight line ?

OR
2. (a) Explain the statistical role in least square theory.

AM-229
P.T.O.
(b) Fit second degree parabola to the following data by least square method

$$
\begin{array}{lllll}
\mathrm{x} .: & 1.0 & 2.0 & 3.0 & 4.0 \\
\mathrm{y}: & 6.0 & 11.0 & 18.0 & 27
\end{array}
$$

(c) Explain what do you mean by multiple. regression.
3. (a) Explain principle of least square. 4
(b) Fit the curve $Y=a x^{b}$ to the following data.

$\mathrm{X}:$	1	2	3	4	5	6
$\mathrm{Y}:$	1200	900	600	200	110	50

(c) Explain what is transcendental equation ? Explain the method to fit transcendental equation.

OR

4. (a) Explain what is non-linear regression ? 4
(b) Explain how will you reduce $y=a x^{b}$ to linear form.
(c) Given the following data.

$$
\begin{array}{llllll}
\mathrm{x}: & 1 & 2 & 3 & 4 & 5 \\
\mathrm{y}: & 0.5 & 2 & 4.5 & 8 & 12.5
\end{array}
$$

