B.C.A. Part—I (Semester—II) Examination DISCRETE MATHEMATICS

Paper-2ST5

Time: Three Hours]

[Maximum Marks: 60

Note:—(1) All questions carry equal marks.

(2) Attempt ONE question from each unit.

UNIT-I

- 1. (a) Define:
 - (i) Degree of a Graph
 - (ii) Degree of Vertex
 - (iii) Isolated Vertex or Node.

6

(b) Define adjacency matrix and find adjacency matrix from the following graph and write observations:

- 2. (p) Show that the maximum degree of any vertex in a simple graph with n vertices is n-1.
 - (q) Prove that if graph G is disconnected then its complement G⁺ is connected.

6

6

UNIT---II

(a) Define isthmus and prove that an edge e of a graph G is isthmus iff it does not belong to any circuit.

UNW--24802

(Contd.)

www.sgbauonline.com

(b) Find edge connectivity, vertex connectivity, cut edge and cut vertex of the following graphs:

4. (p) Find shortest path from vertex a to b by using Dijkstra's algorithm.

(q) Show that the vertex connectivity of a graph G can not exceed the edge connectivity of G
 i.e. K(G) ≤ λ(G).

UNIT--HI

5. (a) Show that the following graph is Eulerian and trace Eulerian circuit by using Fluery's algorithm.

6

6

- (b) Give an example of a graph which is:
 - (i) Eulerian and Hamiltonian
 - (ii) Neither Hamiltonian nor Eulerian
 - (iii) Eulerian but not Hamiltonian.

6

6. (p) Prove that an Eulerian graph G is arbitrarily traceable from vertex v in G if and only if it belongs to every circuit in G.

UNW--24802 2 (Contd.)

(q) Find Hamiltonian path and cycle in the following graphs:

UNIT-IV

- (a) Prove that in a binary tree of n-vertices has $\frac{(n+1)}{2}$ pendant vertices.
 - (b) Find the centre, radius and diameter of a following tree. 6

(p) Find all spanning tree of the following graph: 8.

(q) Define tree and prove that a graph is tree if and only if there exist only one path between every pair of vertices.

UNIT-V

- (a) Define:
 - (i) Diagraph
 - (ii) Network
 - (iii) Arborescence.

UNW -24802 3 (Contd.)

6

6

6

6

6

(b) Find shortest spanning tree by using Krushkal's algorithm:

- 10. (p) Draw the figure of a directed graph given formally as V(G) = {A, B, C, D}
 E(G) = {(A, D), (B, A), (D, B), (B, C), (D, C), (B, B)} and find in-degree and out-degree of each of the vertex.
 - (q) Determine maximum flow between a through z, if capacity (weight) are given on the following graph:

UNW--24802 4 175