(b) Solve the equation $x-\sin x-\frac{1}{2}=0$ by using fixed point iteration method.
(c) Obtain the square root of 12 by Newton Raphison method.
9. (a) State the algorithm used in Simple Gauss elimination method.
(b) Solve the following system of equations by using Gauss elimination with partial pivoting.

$$
\begin{gathered}
5 x_{1}+3 x_{2}+7 x_{3}=4 \\
x_{1}+5 x_{2}+2 x_{3}=2 \\
7 x_{1}+2 x_{2}+10 x_{3}=5 \\
O R
\end{gathered}
$$

$$
8
$$

10. (a) Explain the piffalls occurred in Simple Gauss
. An el i_{3} elimination method.
(b) Solve the following system of equation by foc han Simple Gauss elimination method.

$$
\begin{aligned}
& 3 x_{1}+6 x_{2}+x_{3}=16 \\
& 2 x_{1}+4 x_{2}+3 x_{3}=13
\end{aligned}
$$

$$
x_{1}+3 x_{2}+2 x_{3}=9
$$

wWw.sgbauonline.com
(c) Define with the help of example analog computing.
3. (a) State the different errors involved in numerical computing.
(b) Explain the concept of truncation error. 4
(c) Find the truncation error in the result of the following function for $x=\frac{1}{5}$ when we use (i) First three terms, (ii) First four terms.

OR

4. (a) Explain what do you mean by blunder error ? In which case it occurs?
(b) Explain how will you approximate a number using rounding off rate.
(c) Rounding off the following numbers correct to four decimal places.
(i) 56.243827
(ii) 0.235082
(iii) 0.560012
(iv) 0.005789
5. (a) Explain what do you mean by Transcendental equations? State two examples of it. 6
(b) Solve the equation $x^{3}-x-3=0$ by using bisection method.

OR

6. (a) Explain how will you find out root of the nonlinear equation by using graphical method.
(b) By regula falsi method find the root of an equation $f(x)=x \sin x-1=0$ that is located in the internal [0, 2].

6
7. (a) Derive the Newton Raphson iterative formula by using Taylor's expansion for solving $f(x)=0$.

4
(b) Find by Newton Raphson method the root of the equation $x^{3}-5 x+3=0$.

4
(c) Use the Secant method to find the root of the equation $x-e^{x}+2=0$.

4

OR

8. (a) Explain the method of iteration for finding roots of nonlinear equation.
