AM-222

B.C.A Part-I (Semester-I) Examination DIGITAL TECHNIQUES - 1ST3

Time : Three Hours]
[Maximum Marks : 60

Note : (1) ALL questions are compulsory.
(2) Draw diagrams wherever necessary.

EITHER

1. (A) What is Logic Gates? Explain truth table and symbol of NOR and EX-NOR gate.

6
(B) Convert (26.6) ${ }_{10}$ into Binary, Octal and Hexadecimal number system.

OR

(P) Perform the following conversion and find the value of x :
(i) $(2013)_{8} \rightarrow(x)_{2}$
(ii) (AB.CF) ${ }_{16} \rightarrow(\mathrm{x})_{8}$
(iii) $(111010.0110)_{2} \rightarrow(\mathrm{x})_{16}$.

6
(Q) Subtract (1010) from (1101) using 1's and 2's complement method.

4
(R) Draw the symbol of NAND and EX-OR gate. 2 EITHER
2. (A) What is CMOS logic ? Explain construction and working of two input CMOS NAND gate. 8
(B) Define the terms :
(i) Fan-in
(ii) Fan-out
(iii) Propagation delay
(iv) Noise immunity.

OR
(P) Draw the circuit diagram of two input TTL NAND gate. Explain its construction and working. 8
(Q) State the specification and application of DTL NAND gate.

EITHER

3. (A) State and prove first and second De-Morgan's theorems using truth table.
(B) Simplify the following Boolean equation :
(i) $\mathrm{y}=\mathrm{ABC}+\mathrm{A} \overline{\mathrm{B}} \mathrm{C}+\mathrm{ABC}$
(ii) $\mathrm{y}=\mathrm{AB} \overline{\mathrm{C}}+\mathrm{A} \overline{\mathrm{BC}}+\overline{\mathrm{A}} \mathrm{BC}+\mathrm{ABC}+\mathrm{A} \overline{\mathrm{B} C}$. 6

OR
(P) Draw the logic diagram and truth table for Boolean equation $y=A+\overline{A B}+A \bar{B}$.
(Q) Draw k-map and simplify the following Boolean equation:
$\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,2,4,6,8,10)$. 6

EITHER

4. (A) What is Half adder? Explain the construction and working of half adder.6
(B) Draw the logic diagram of 4 bit parallel adder. 3
(C) State the difference between half adder and full adder.

OR
(P) Explain the construction and working of full subtractor. 6
(Q) Explain the IC 74181 as ALU. 3
(R) Draw the logic diagram of full adder. 3

EITHER

5. (A) What is Demultiplexer ? Explain the construction of $1: 4$ demultiplexer with logic diagram and truth table.
(B) Explain use of Decoder as Demultiplexer.

OR
(P) What is Decoder ? Explain construction of 2:4 decoder with logical diagram and truth table.
(Q) State the difference between Multiplexer and Demultiplexer.

